

User’s Guide

DirectJNgine 2.0 alpha 1 for ExtJs 4.x

Copyright © Pedro Agulló Soliveres, 2009, 2011

DirectJNgine 2.0
alpha 1 for ExtJs

DirectJNgine: User’s Guide

2 of 47

1. ExtJs 2.0 alpha 1 ..4

Introduction..4

Running the ExtJs 4.x examples with DirectJNgine ...4

Using DirectJNgine ...4

2. What is DirectJNgine? ...5

DirectJNgine in 30 seconds ...5

3. Features ..7

4. Installing DirectJNgine in your system...8

5. Configuring a new project to use DirectJNgine ..9

6. DirectJNgine by example ..10

Running ExtJs examples against DirectJNgine ...10

Step by step “Hello world” with DirectJNgine ..10

Step 1: configure DirectJNgine servlet in web.xml ...10

Step 2: make our server methods available to Javascript ..11

Step 3: decide what your server methods will be like ...12

Step 4: write the server methods in Java ...13

Step 5: tell DirectJNgine where to look for server methods..14

Step 6: register your methods with Ext Direct...14

Step 7: call the methods from Javascript ...14

Other issues..15

Wrap up ...16

7. Form posts and DirectJNgine ..17

Step 1: writing the Javascript code that loads/submits data ..17

Step 2: configure the form...18

Step 3: write the Java code for loading form data ...18

Step 4: write the Java code for submitting form data ..19

An alternative way to submit data ...20

8. Polling Providers and DirectJNgine ..22

9. DirectStore with DirectJNgine ..24

Passing parameters to DirectStore’s directFn..25

Passing unknown parameters to DirectStore’s directFn..26

10. Google AppEngine support ...27

11. Servlet configuration ...28

12. State management and session/application scope support...31

Stateful actions ...31

Generating multiple action instances for a Java class ...32

Copyright © Pedro Agulló Soliveres, 2009, 2011

3 of 47

13. Customizing data conversion and Gson configuration..33

Changing Gson’s configuration...33

Adding your own serializers/deserializers ...34

Closing thoughts ..36

14. Handling JSON data directly ...37

15. Adding actions and methods programmatically ..38

16. Checking client-side parameters ..41

17. DirectJNgine Optimization..43

Optimizing api files generation and usage ...43

Optimizing batch requests handling using multiple threads ..44

18. Diagnostics and logging ..45

Measuring request execution time ...45

Undestanding which logs go together..45

19. How reliable is all of this? ...46

20. Licensing..47

Acknowledgments

I would like to thank José María Martínez and Judith Marcet for their feedback, as well
as for the nice time we have together as part of the softwarementors agile team.

Thanks!

DirectJNgine: User’s Guide

4 of 47

1. ExtJs 2.0 alpha 1

Introduction
This is the first alpha for DirectJNgine 2.0, which supports ExtJs 4.x.

Several incompatible changes have been made to ExtJs resulting in some DJN code breaking: the
purpose of this alpha is to help us find other problems that might be lurking, with a little help from
the community.

Very important!

The remaining documentation belongs to DirectJNgine 1.3, and is mostly correct:
however, due to changes in ExtJs 4.x itself that break older ExtJs code, we advise you to
be careful. If you find some problem, please, contact us.

As far as we know, code using baseParams is not supported anymore. Besides, we have
implemented form submitting via the api parameter: the approach we used in ExtJs 3.x
does not work with ExtJs 4.x anymore, again due to changes in ExtJs itself. See example
and test code for information on how to support form submit.

Running the ExtJs 4.x examples with DirectJNgine
You can run all ExtJs Direct examples against DirectJNgine. To do that, you need to perform the
following changes to the ExtJs examples located under its examples/direct directory:

• direct.js: replace url: 'php/poll.php' with url: Ext.app.POLLING_URLS.message.

• direct-form.html: replace src="php/api.php" with src="../../../demo/Api.js".

• direct-grid.html: replace src="php/api.php" with src="../../../demo/Api.js".

• direct-tree.html: replace src="php/api.php" with src="../../../demo/Api.js".

• direct.html: replace src="php/api.php" with src="../../../demo/Api.js".

• named-arguments.html: replace src="php/api.php" with
src="../../../demo/Api.js".

Using DirectJNgine
To start working with DirectJNgine, check the following chapters.

Copyright © Pedro Agulló Soliveres, 2009, 2011

5 of 47

2. What is DirectJNgine?
DirectJNgine (or djn, for short) is a Java implementation of the Ext Direct API. This API allows
applications using ExtJs to call Java methods from Javascript almost transparently, making things
that used to be more or less cumbersome or time consuming much easier.

New to Ext Direct?

If you are new to Ext Direct, please check the ExtJs documentation and examples, or go
to http://extjs.com/blog/2009/05/13/introducing-ext-direct/ or
http://extjs.com/products/extjs/direct.php for details. From now on, we will assume that
you have a basic understanding of Ext Direct, as well as of its “vocabulary” (action,
method, etc.)

DirectJNgine in 30 seconds
Now, how is everyday life with DirectJNgine?

Let’s assume that you want your Javascript code to call a sayHello Java method, which will
receive a person name and return a greeting message. That is as easy as writing the following Java
code:

public class Action1 {
 @DirectMethod
 public String sayHello(String name) {
 return “Hello, ” + name + “. Nice to meet you!”;
 }
}

Basically, you write your Java code without much concern for whether it will be called by some
Javascript code living in a remote server or not. The secret? Using the @DirectMethod annotation
DirectJNgine provides. Once you do that, you will get automatic remote method call support: no
need for boring, cumbersome and error-prone glue code.

Using the newly written method is as easy as writing the following Javascript:

Action1.sayHello(“Pedro”, function(p, response) {
 Ext.MessageBox.alert(“Greetings”, response.result);
});

The only remarkable thing here is the function passed as a parameter to the Action1.sayHello
method, a Javascript function that will be called when the server response arrives, to avoid blocking
the application.

If you look at the client and server code, you will notice that there is no “extra fat”: what you see is
what you get.

Of course, things can’t be that easy: we are talking about remote communication, Javascript in one
side, Java on the other, and the net in the middle. So, yes, there will be things to configure, issues
to take into account, and best practices to follow in order to stay sane.

DirectJNgine: User’s Guide

6 of 47

But once you start to master them, things will be almost that easy.

Copyright © Pedro Agulló Soliveres, 2009, 2011

7 of 47

3. Features
In its current version, we think DirectJNgine is very much feature-complete, providing the
following features:

• Supports ExtJs 4.x

• Annotations-based configuration.

• Support for all kinds of requests:

o JSON requests.

o Batched JSON requests.

o Simple Form Posts (no files to upload).

o Upload Form Posts.

o PollingProvider requests.

• Multithreaded processing of batched requests, for better performance.

• Method name based configuration.

• Automatic Javascript API files generation.

• Detailed User’s Guide.

• Demos: implements all the server side functionality required to run the demos provided by
ExtJs in examples/direct.

• API files consolidation: consolidate several provider apis into one file to minimize network
traffic.

• API files minification and comment removal.

• Support for programmatic Api generation + hook to allow custom generation on startup.

• Debug mode support.

• Fully automated tests: more than 80 unitary tests are executed every time there are changes
to the code.

• Tested against Firefox, Internet Explorer, Safari and Chrome.

• Possibility to call public, private, package and protected instance or static methods in public
or private classes.

• Detailed logging, to support easy diagnostic of problems and performance measurements.

• Open Source, free for commercial projects too.

• Stateful actions: actions can have session and application scopes.

• Support for accessing the current session, servlet context, servlet configuration, etc., from
within action methods.

• Support for Google AppEngine.

DirectJNgine: User’s Guide

8 of 47

4. Installing DirectJNgine in your system
To install the library, decompress the appropriate directjngine.xxx.zip file into a directory (xxx is the
library version).

You will need to install ExtJs too: due to licensing issues, we can’t redistribute ExtJs with this
library.You will have to download it from http://extjs.com. Just make sure you are using the right
version, please!

Once installed, copy it in an extjs subdirectory under the WebContent directory in our distribution.

Copyright © Pedro Agulló Soliveres, 2009, 2011

9 of 47

5. Configuring a new project to use DirectJNgine
In order to use DirectJNgine in a new application, you will need to add the following JARs to your
web app WEB-INF/lib directory:

• DirectJNgine itself: the file is deliverables/directjngine.xxx.jar, where xxx is the version
number, such as 1.0.

• Third party libraries used by DirectJNgine:

o All JARs in the lib directory. Please, ignore its subdirectories.

o All JARs in the lib/runtimeonly directory.

If you use the client-side parameter checking debug-time support (take a look at the Checking
client-side parameters chapter), you will need to add several javascript files to your web app:

• djn-remote-call-support.js: put it in djn/djn-remote-call-support.js under the web root
directory.

You can find this file in deliverables/djn-remote-call-support.js.

• ejn-assert.js: put it in ejn/ejn-assert.js under the web root directory.

You can find this file in deliverables/ejn-assert.js.

Finally, you will need to provide the ExtJs files: due to licensing issues you need to download them
separately, and then install them in your web app.

The enclosed demo app might use some other files, but they are not needed in order to use
DirectJNgine, and they are not part of it.

Compilation only JARs

In order to compile, you might need the libraries in lib/compiletimeonly or not,
depending on how your environment is set up.

This directory contains JAR files the web server will already provide, so you must not
add them to your app WEB-INF/lib directory.

DirectJNgine: User’s Guide

10 of 47

6. DirectJNgine by example
ExtJs provides several examples of how to use the Direct API. You can find them in the
extjs/examples/direct subdirectory. These examples work beautifully…but they use PHP in the
server side.

However, it is very easy to make them work against Java in the server side, using DirectJNgine. In
fact, we will use them in order to show how DirectJNgine works. To run the examples, just perform
the following changes to the specified files:

• direct.js: replace url: 'php/poll.php' with url: Ext.app.POLLING_URLS.message.

• direct-form.html: replace src="php/api.php" with src="../../../demo/Api.js".

• direct-grid.html: replace src="php/api.php" with src="../../../demo/Api.js".

• direct-tree.html: replace src="php/api.php" with src="../../../demo/Api.js".

• direct.html: replace src="php/api.php" with src="../../../demo/Api.js".

• named-arguments.html: replace src="php/api.php" with
src="../../../demo/Api.js".

That’s all. From now on, the examples will work directly with against a DirectJNgine based
backend.

In fact, we have provided the application we use to run the automated DirectJNgine tests with the
distribution, and have added support to run the ExtJs Direct demos once “converted” to
DirectJNgine.

Running ExtJs examples against DirectJNgine
To run Ext Direct examples you need to install the djn_test war. To do that, follow these steps:

1. Install our demos/test_war/djn_test.war in your web server.

2. Start the web application, making sure it is decompressed.

3. Stop the web application, and add the ExtJs libraries in an extjs subdirectory under the web
root directory of the decompressed war.

Do not forget the extjs examples directory, as we use some of its gadgets and examples.

4. Modify the extjs/examples/direct files as explained above.

5. Restart the web application.

6. Navigate to the demo/DjnDemo.html page: you can run all examples from there.

Step by step “Hello world” with DirectJNgine

Step 1: configure DirectJNgine servlet in web.xml

Open the WebContent/web.xml file included with your DirectJNgine distribution, and take a look at
the following lines, used to configure the DirectJNgine servlet:

Copyright © Pedro Agulló Soliveres, 2009, 2011

11 of 47

<!-- DirectJNgine servlet -->
<servlet>
 <servlet-name>DjnServlet</servlet-name>
 <servlet-class>
 com.softwarementors.extjs.djn.servlet.DirectJNgineServlet
 </servlet-class>

 <init-param>
 <param-name>providersUrl</param-name>
 <param-value>djn/directprovider</param-value>
 </init-param>

 <!-- more parameters... -->

 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>DjnServlet</servlet-name>
 <url-pattern>/djn/directprovider/*</url-pattern>
</servlet-mapping>

Of course, there are more parameters, but ignore them by now, please.

The servlet url-pattern must always end with “/*”, and we recommend that you use the default
url, /djn/directprovider/*.

The providersUrl parameter is essential, because it will be used by Ext Direct to communicate
with DirectJNgine: make sure it is the same as the servlet’s url-pattern, minus the ending “/*“.

Step 2: make our server methods available to Javascript
Open the direct.php file: it is a plain html file, so do not worry. We want to call your attention to
the following line:

<script type="text/Javascript" src="../../../demo/Api.js"></script>

This line must be there, because Api.js is the Javascript file that provides access to the Java methods
we implemented in the server. How do you write it? Well, you don’t, DirectJNgine will generate it
on your behalf.

But, how does DirectJNgine know how to create it? Open web.xml again, and take a look at the
following lines:

<init-param>
 <param-name>apis</param-name>
 <param-value>
 test,
 demo,
 </param-value>
</init-param>

<init-param>
 <param-name>demo.apiFile</param-name>
 <param-value>demo/Api.js</param-value>

DirectJNgine: User’s Guide

12 of 47

</init-param>

<init-param>
 <param-name>demo.apiNamespace</param-name>
 <param-value>Ext.app</param-value>
</init-param>

Our demo application provides two different provider apis, one for test methods (called test), and
another one for demo methods (called demo). You must provide the apis parameters in order to tell
DirectJNgine the Direct provider apis you want to define.

You specify the file the demo api will be writtent to using the demo.apiFile parameter. Its value
is the file path relative to the web app root directory. In our demo, since it is demo/Api.js,
DirectJNgine will generate Api.js in the WebContent/demo directory of your installation.

Besides, you can specify the namespace where the api will live, using the demo.apiNamespace
parameter.

Of course, if we were setting the test api configuration, the parameter names would have been
test.apiFile and test.apiNamespace, respectively.

For additional configuration parameters, check the Servlet configuration chapter.

Alternative API handling

DirectJNgine generates javascript files containing the API used to access the Java code,
but there is in alternative way to access the API. Please, check the chapter explaining
how to support Google’s AppEngine for details on how to access the API in an
environment in which it is not possible to create/update files in the server.

Step 3: decide what your server methods will be like

If you open the extjs/examples/direct/direct.js example file, you will find that the demo calls two
server methods, as follows:

TestAction.doEcho(text.getValue(), function(result, e){
// ...
TestAction.multiply(num.getValue(), function(result, e){
// ...

As you already know, the functions at the end of the method calls are the callbacks that will be
invoked by Ext Direct to handle the server result. Ignore them, they are not passed to the server –
and we will get back to them later.

Ignoring the functions, the call would be a lot more like

TestAction.doEcho(text.getValue());

// ...

TestAction.multiply(num.getValue());

// ...

Copyright © Pedro Agulló Soliveres, 2009, 2011

13 of 47

TestAction.doEcho receives a string and returns it. TestAction.multiply receives a string, tries
to multiply it by eight, and returns the result as a number. And, yes, that means the server can
receive a string that is not a valid number, so we will have to take care of this in some way. But,
again, let us postpone those details.

Step 4: write the server methods in Java
This is the Java code for the methods:

public class TestAction {

 @DirectMethod
 public String doEcho(String data) {
 return data;
 }

 @DirectMethod
 public double multiply(String num) {
 double num_ = Double.parseDouble(num);
 return num_ * 8.0;
 }

 public static class Node {
 public String id;
 public String text;
 public boolean leaf;
 }
}

We have grouped the methods for the TestAction action in a TestAction class. But if you need to
have a class that has not the same name as the action, use the @DirectAction annotation as
follows:

@DirectAction(action="TestAction")
public class MyTestActionClass {
 // ...

We have implemented the methods with exactly the same names the Ext Direct methods have,
adding the @DirectMethod annotation to them.

Again, if you had to write the Java methods with a different name, you could use the
@DirectMethod annotation as follows:

@DirectMethod(method="multiply")
public double myMultiplyMethod(String num) {
 // ...

If you look at doEcho, you will find that the code is absolutely straightfo rward, it receives a string
and returns it. Nothing to worry about -unless there is some internal server error, but let me talk
about that later.

DirectJNgine: User’s Guide

14 of 47

Now, if you take a look at multiply, things get a bit more interesting. What if we receive as an
argument something like “hello world”? If that’s the case, the call to Double.parseDouble will
throw a NumberFormatException. DirectJNgine will take care of this, and return information that
allows Ext Direct to know that something went wrong, so that your Javascript code can handle the
problem.

Coping with method’s results will be explained later, just let me give you reassurance that even
unexpected server errors can be handled very easily.

Step 5: tell DirectJNgine where to look for server methods

Now, how does DirectJNgine know what are the classes that contain action methods, so that it can
look for all those nice annotations?

We use the servlet demo.classes parameter to tell djn the classes to check, as follows:

<init-param>
 <param-name>demo.classes</param-name>
 <param-value>
 com.softwarementors.extjs.djn.demo.Poll,
 com.softwarementors.extjs.djn.demo.TestAction,
 com.softwarementors.extjs.djn.demo.Profile
 </param-value>
</init-param>

Remember, here demo is the api definition for ExtJs Direct examples, if we were configuring the
tests api, the parameter to configure would have been tests.classes.

Step 6: register your methods with Ext Direct
In order for ExtJs to be able to call our java methods we need to register a remoting provider. The
way it’s been done in direct.js is as follows:

Ext.Direct.addProvider(
 Ext.app.REMOTING_API,
 // ...
);

Please, note that Ext.app is the namespace we specified via the demo.apiNamespace servlet
parameter, and REMOTING_API is the provider configuration we have provided in Api.js (we always
use the same name, REMOTING_API, to make your life easier).

Step 7: call the methods from Javascript

The WebContent/extjs/examples/directscript.js file calls our TestAction.doEcho Java method as
follows:

TestAction.doEcho(text.getValue(), function(result, e) {
 var t = e.getTransaction();
 out.append(String.format(
 '<p>Successful call to {0}.{1} with ' +
 'response:<xmp>{2}</xmp></p>',
 t.action, t.method, Ext.encode(result)));
 out.el.scrollTo('t', 100000, true);

Copyright © Pedro Agulló Soliveres, 2009, 2011

15 of 47

});

Note we are passing a second parameter, a Javascript function that will be called with the data
returned by the server (it is not sent to the server!). We need to use a function to handle the result
because remote calls are asynchronous, as it would not be a good idea to block the program waiting
for the result.

The function receives the call result in the result parameter, and additional data in the e event,
including the transaction, which holds the invoked action and method names, among other things.

The call to multiply is a bit more interesting, because it shows how to handle server errors:

TestAction.multiply(num.getValue(), function(result, e) {
 var t = e.getTransaction();
 if(e.status) {
 out.append(String.format(
 '<p>Successful call to {0}.{1} with ' +
 'response:<xmp>{2}</xmp></p>',
 t.action, t.method, Ext.encode(result)));
 } else {
 out.append(String.format(
 '<p>Call to {0}.{1} failed with message:<xmp>{2}</xmp></p>',
 t.action, t.method, e.message));
 }
 out.el.scrollTo('t', 100000, true);
});

Here, we get the event transaction and check its status : if it is true, the execution of the
application method finished successfully, and you can safely use the result. Else, the execution
finished with a server error. For all intents and purposes this is considered to be a server error by
DirectJNgine, and is notified as such to Ext Direct.

When there is a server error, the event received by the function handling the result will have a
message field, providing some kind of explanation about the problem, and if in debug mode, a
where field providing additional information. This field will always be an empty string when not in
debug mode.

DirectJNgine provides as message the name of the Java exception and the message it contains,
while where contains the full stack trace of the exception.

Other issues

We mentioned that while in debug mode you will get additional information about server errors.
Now, how do you specify whether the application is in debug mode or not? Just use the servlet
debug parameter, as follows:

<init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
</init-param>

Finally, in case you are wondering what the generated api file looks like, here is (part of) the code:

Ext.namespace('Ext.app');

DirectJNgine: User’s Guide

16 of 47

Ext.app.PROVIDER_BASE_URL=window.location.protocol + '//' +
 window.location.host + '/' +
 (window.location.pathname.split('/')[1]) + '/' + 'djn/directprovider';

// ...

Ext.app.REMOTING_API = {
 url: Ext.app.PROVIDER_BASE_URL,
 type: 'remoting',
 actions: {
 TestAction: [
 {
 name: 'doEcho'/*(String) => String */,
 len: 1,
 formHandler: false
 },
 {
 name: 'multiply'/*(String) => double */,
 len: 1,
 formHandler: false
 }
 // ...
}

We think that it might be interesting for the api users to know the Java types of the method
parameters and result, and therefore we added it to the generated source code: the parameter types
are specified in parentheses, while the return type is added after the “=>” string.

Wrap up

Now, that’s a lot of steps!

However, once you have finished with basic configuration, you will find that writing a new method
involves just three steps: thinking what your method has to look like, writing the java method itself,
and calling it from Javascript. This is not much more difficult that creating a new Java method to be
used by other Java code in your application.

Copyright © Pedro Agulló Soliveres, 2009, 2011

17 of 47

7. Form posts and DirectJNgine
Form processing with DirectJNgine is quite easy. But, before we start to take a look at it, make sure
that you have followed the steps we outlined before to “port” the demos from PHP to a
DirectJNgine based Java backend.

Now, let’s check how to load and submit form data using the demo included with ExtJs itself, in its
demo/direct/direct-form.js file.

Step 1: writing the Javascript code that loads/submits data
To begin with, we are going to study only the first form in the demo (see Figure 1). The data is
some kind of basic person info that includes a name, an email and a company. Even if it is not
visible, there is an id that uniquely identifies the person, and an additional hidden foo field, just to
make things interesting.

Figure 1. Loading and submitting data

Now, how are we going to load that basic person info? The first thing that comes to mind is to pass
the person id to the load method. And, again, to make things interesting, we will pass a foo value.

The Javascript code to load the form data will be as follows:

basicInfo.getForm().load({
 params: {
 foo: 'bar',
 uid: 34
 }
});

You pass the parameters to load as a params object, not directly, that’s the way it is.

The next step is to submit the form data for processing. Here is the Javascript code:

basicInfo.getForm().submit({
 params: {
 foo: 'bar',
 uid: 34
 }
});

DirectJNgine: User’s Guide

18 of 47

But, wait! Where are the name, email and company we should be passing to the server? Well, the
form has fields with exactly those names: therefore ExtJs will pass their value automatically to the
submit handler waiting for them in the backend. But this only happens for the submit method!

Step 2: configure the form
Ok, now, how does Ext Direct know what Java methods to call? You tell Ext Direct via an api
configuration parameter, as follows:

api: {
 // The server-side method to call for load() requests
 load: Profile.getBasicInfo,
 // The server-side must mark the submit handler as a 'formHandler'
 submit: Profile.updateBasicInfo
}

You will have to tell Ext Direct in what order will the load parameters be passed to the Java
method. Use the paramOrder configuration parameter to make sure that the id will be the first
parameter and foo the second one, as follows:

paramOrder: ['uid', 'foo']

And, no, you need not specify the order in which the fields and parameters will be passed to the
Java method that handles the form submit, they are passed as a map of name-value to the Java
method.

Step 3: write the Java code for loading form data
You can find the Java code in our Profile.java file. Lets’ take a look at our getBasicInfo method,
the one that handles data loading:

 @DirectMethod
 public BasicInfo getBasicInfo(Long userId, String foo) {
 assert userId != null;
 assert foo != null;

 BasicInfo result = new BasicInfo();
 result.data.foo = foo;
 result.data.name = "Aaron Conran";
 result.data.company = "Ext JS, LLC";
 result.data.email = "aaron@extjs.com";
 return result;
 }

Remember, we told Ext Direct that the id is the first parameter, and foo the second one, and that’s
how we have to write the Java method. Besides, the method must be annotated with the
@DirectMethod annotation.

If you look carefully, you will see that we are returning a BasicInfo object to the client. The code
for it is as follows:

public static class BasicInfo {
 public static class Data {

Copyright © Pedro Agulló Soliveres, 2009, 2011

19 of 47

 public String foo;
 public String name;
 public String company;
 public String email;
 }

 public boolean success = true;
 public Data data = new Data();
}

This looks complicated, but it is not, I promise. What’s happening here is that the Ext Direct
expects data returned from a load call to have a certain format.

First of all, Ext Direct expects you to provide a success value that you set to true if everything
went well, and to false if there was a problem. Then, it expects the returned data to be put in a data
value. Both of them are there in the BasicInfo class, which is nothing more than a value holder.

It is you who decides what goes inside of the data. In this case, we just have foo, name, company
and email, exactly the names we gave the form fields and/or parameters passed back and forth. We
created the Data class to reflect this structure, nothing more. By following these conventions Ext
Direct will perform all magic required to fill the form fields and pass the data to our Java method.

Once your method returns the data, DirectJNgine will performs all magic required to send it to Ext
Direct for processing at the client.

Step 4: write the Java code for submitting form data
In order to handle the form submit we have to define a Java method annotated with
DirectFormPostMethod. Besides, the Java method must receive two parameters. The first one
must be a map of field name-field value pairs, representing all form fields, except input file fields.

The second parameter must be a map of field name-file items representing only the input file fields:
you can access each file using the FileItem’s getInputStream method. If your form has no input
file fields, this map will be empty.

Here is the Java code:

@DirectFormPostMethod
public SubmitResult updateBasicInfo(Map<String, String> formParameters,
 Map<String, FileItem> fileFields)
{
 assert formParameters != null;
 assert fileFields != null;

 SubmitResult result = new SubmitResult();

 String email = formParameters.get("email");
 result.success = !email.equals("aaron@extjs.com");
 if(!result.success) {
 result.errors = new HashMap<String,String>();
 result.errors.put("email", "already taken");
 }

 result.debug_formPacket = formParameters;
 return result;
}

DirectJNgine: User’s Guide

20 of 47

Here, we are performing data validation by checking the email value: if it is aaron@extjs.com, we
will consider that the data is wrong. In that case we set the success field to false, and add an entry
to the errors result, a pair having a field-name as key and an error text as value.

By following this convention ExtJs will handle the error on its own, providing feedback as shown
in Figure 2.

Figure 2. Validation error, as reported by the server.

The method returns a SubmitResult object, defined as follows:

private static class SubmitResult {
 public boolean success = true;
 public Map<String, String> errors;
 public Map<String,String > debug_formPacket;
}

The interesting thing in this class is the fact that we are using a map to return error information to
Javascript. When the email is wrong, the data returned to Javascript will be as follows:

result = {
 success : false,
 errors: {
 email: ‘already taken’
 },
 // ...
}

An alternative way to submit data
Just for the record, there is another way to submit data. The Javascript will be as follows:

handler: function(){
 Profile.updateBasicInfo(form.getForm().el, function(result, e){
 //...

Copyright © Pedro Agulló Soliveres, 2009, 2011

21 of 47

In this case, we just pass the form’s el element as the first and only parameter to the remote
method. The Java method implementation will not change.

DirectJNgine: User’s Guide

22 of 47

8. Polling Providers and DirectJNgine
Polling providers make it possible to make periodical requests to the server. The example in
extjs/examples/direct/direct.php creates a polling provider that periodically calls the server to get its
current date and time. Let’s see how this can be accomplished with DirectJNgine.

The first thing you have to do is register the polling provider. This is done in the “ported” version
of extjs/examples/direct/direct.js as follows:

Ext.Direct.addProvider(
 // ...
 {
 type:'polling',
 url: Ext.app.POLLING_URLS.message
 }
);

Here, we are telling Ext Direct to create a polling provider whose url will be the one in
Ext.app.POLLING_URLS.message. We will explain where this comes from in minute, bear with
me.

Now, Ext Direct will receive a periodic notification sent by the server, which it needs to handle in a
callback function, as usual. The code for the callback is as follows:

Ext.Direct.on('message', function(e){
 out.append(String.format('<p><i>{0}</i></p>', e.data));
 out.el.scrollTo('t', 100000, true);
});

In the end, Ext Direct is just handling an event, called message in the example. Why message? Take
a look at the Java code handling the request, and you’ll get the answer:

@DirectPollMethod(event="message")
public String handleMessagePoll(Map<String,String> parameters) {
 assert parameters != null;

 Date now = new Date();
 SimpleDateFormat formatter =
 new SimpleDateFormat("yyyy/MM/dd 'at' hh:mm:ss");
 return "Current time in server: " + formatter.format(now);
}

You will have noticed the @DirectPollMethod(event="message") annotation, and that the event
name is message because we have specified that as the event value in the DirectPollMethod
annotation. This is the annotation we need to add to a method used to handle polling provider
requests.

Poll handlers receive as their only parameter a Java map with parameter names as keys and
parameter values as values. In the example no parameters are passed to the request handler, but you
can provide parameters using the provider baseParams config option.

Now, back to the url, Ext.app.POLLING_URLS.message. Where does it come from? It is part of the
generated api file: Ext.app is the value we specified for apiNamespace in the servlet configuration

Copyright © Pedro Agulló Soliveres, 2009, 2011

23 of 47

for the demo api, and POLLING_URLS is the object holding the urls of all polling events in that api.
Lastly, message is the event name.

It is possible to handle polling provider events in Javascript via the provider’s data listener as well.
The following code is from one of our internal tests, and shows how to do that. Besides, it shows
how to pass parameters to the request, using the baseParams config option.

var pollingProvider = Ext.Direct.addProvider({
 type: 'polling',
 interval: 1000,
 url: test.POLLING_URLS.test_pollWithBaseParams,
 baseParams : {
 arg1 : 'value',
 },
 listeners: {
 data: function(provider, event) {
 Ext.log('test_pollWithBaseParams');
 timesCalled++;
 if (timesCalled === 2) {
 pollingProvider.disconnect();
 Djn.Test.check('test_pollWithBaseParams',
 event.data !== undefined && event.data === 'arg1=value',
 "Expected to receive 'arg1=value' as event.data");
 }
 }
 }
});

pollingProvider.connect();

Just for completeness, let us show the Java code:

@DirectPollMethod
public String test_pollWithBaseParams(Map<String,String> parameters) {
 assert parameters != null;

 // ...

 String result = "";
 for(String key : parameters.keySet()) {
 String value = parameters.get(key);
 result += key + "=" + value;
 }

 return result;
}

Please, note that since we haven’t specified a value for the event parameter in the
DirectPollMethod annotation, the name of the event is the method name.

DirectJNgine: User’s Guide

24 of 47

9. DirectStore with DirectJNgine
The DirectStore is an Ext store that uses Ext Direct to load data. We provide en example of how
to use DirectJNgine for that in djn_test web app, in the demo/DirectStoreDemo.html page.

The Javascript code needed to create the store is as follows:

var experienceStore = new Ext.data.DirectStore({
 paramsAsHash:false,
 root:'',
 directFn: DirectStoreDemo.loadExperienceData,
 idProperty:'description',
 fields: [
 {name: 'startDate' },
 {name: 'endDate'},
 {name: 'description'},
],
 listeners: {
 load: function(s, records){
 Ext.MessageBox.alert("Information", "Loaded " +
 records.length + " records");
 }
 },
});

experienceStore.load();

Setting up a DirectStore is very similar to setting up any other store: the main difference is the
fact that you have to specify the server side method you want to be called to load the store data
using the directFn config parameter.

The server side code is as follows:

private static class Experience {
 public String startDate;
 public String endDate;
 public String description;

 private Experience(String startDate, String endDate,
 String description) {
 this.startDate = startDate;
 this.endDate = endDate;
 this.description = description;
 }
}

@DirectMethod
public List<Experience> loadExperienceData() {
 List<Experience> items = new ArrayList<Experience>();
 Collections.addAll(items,
 new Experience("2009/05/10", "...",
 "Implementation of DirectJNgine for ExtJs")
 // ...
);

 return items;

Copyright © Pedro Agulló Soliveres, 2009, 2011

25 of 47

}

First of all, we define a very simple Java class, Experience, that has all data for items in the store,
(startDate, endDate and description, as defined in the fields config option). The server
method just returns a list of Experience objects.

There is really nothing remarkable about the server method, which as you probably expected just
needs to have the DirectMethod annotation, and must return a list of objects, in this case of type
Experience. However, you must set the DirectStore paramsAsHash configuration parameter to
false, for this to work.

Passing parameters to DirectStore’s directFn
In real life, you will have to pass some parametert to your directFn method. You can do this in
several ways:

• Use the DirectStore baseParams configuration property: lookup argFromBaseParams in
the example code below to learn how to do this.

• Use the load method’s params argument: lookup argPassedInLoadCall in the example
code to check how to do this.

• Add the parameter to the options object received by the DirectStore beforeload method:
lookup argPassedInBeforeLoadEvent to learn how to do this.

Here is the javascript source code for the DirectJNgine test method demonstrating how to use this :

test_loadWithArguments : function() {
 var myStore = new Ext.data.DirectStore({
 paramsAsHash:false,
 root:'items',
 paramOrder: ['argFromBaseParams', 'argPassedInLoadCall',
 'argPassedInBeforeLoadEvent'],
 totalProperty : 'rowCount',
 directFn: DirectStoreTest.test_loadWithArguments,

 idProperty:'id',
 fields: [
 {name: 'id' },
 {name: 'name'}
],
 listeners: {
 beforeload : function(store, options) {
 options.params.argPassedInBeforeLoadEvent = false
 },
 load: function(s, records){
 Djn.Test.check("test_loadWithArguments", records.length === 2,
 "If there is an error, this will never be called: a " +
 "timeout should happen if there is some error!");
 }
 },
 baseParams: {argFromBaseParams:'aValue'}
 });

 myStore.load({
 params: {

DirectJNgine: User’s Guide

26 of 47

 argPassedInLoadCall: 34
 }
 });
}

Remember that you must set paramsAsHash to false. Besides, you must specify the order in which
the parameters will be passed using the DirectStore paramOrder configuration parameter.

Here is the server side test method:

@DirectMethod
public DirectStoreResult djn_test_loadWithArguments(
 String argFromBaseParams, int argPassedInLoadCall,
 boolean argPassedInBeforeLoadEvent)
{
 if(!argFromBaseParams.equals("aValue") || argPassedInLoadCall != 34 ||
 argPassedInBeforeLoadEvent) {
 throw new DirectTestFailedException(
 "Did no receive expected values");
 }

 Output[] result = new Output[2];
 result[0] = new Output();
 result[0].id = 99;
 result[0].name = "name1";

 result[1] = new Output();
 result[1].id = 100;
 result[1].name = "name2";

 DirectStoreResult r = new DirectStoreResult(result, 347);
 return r;
}

Passing unknown parameters to DirectStore’s directFn
If you need to pass unknown parameters (i.e., parameters whose name you don’t know beforehand),
you will need to set the paramsAsHash to true, and then write a direct JSON handling method: we
will study them later.

Copyright © Pedro Agulló Soliveres, 2009, 2011

27 of 47

10. Google AppEngine support
DirectJNgine usually creates/updates the javascript files containing the API code when the web
application is started.

This is done on purpose, because it makes it easier for the web server to perform optimizations such
as telling the browser that the .js file has not changed, avoiding the need to transfer its content. For
very large applications, this can make a difference.

Unfortunately, Google AppEngine does not allow writing files to disk (see http://www.mail-
archive.com/google-appengine@googlegroups.com/msg14572.html). In order to solve this
problem, we are allowing an alternative way to reference the API source code. If you were
referencing a test/MyApi.js API file as follows,

<script type="text/javascript"
 src="test/DjnTestApi-debug.js">
</script>

now you should reference it like this:

<script type="text/javascript"
 src="/XXX/djn/directprovider/src=test/DjnTestApi-debug.js">
</script>

Here, XXX is the context name, djn/directprovider is the value you provided in the DirectJNgine
providersUrl servlet parameter, and /src= is a standard prefix you need to add before the api file
name.

This way, DirectJNgine will generate the source code on the fly, making the API files unnecesary.
In fact, the source will be generated and minified at start time, and placed in a cache.

Now, if you don’t want that DirectJNgine creates/updates the source files, you will need to set the
createSourceFiles servlet parameter to false (it is true by default), so that AppEngine does not
complain.

Last, but not least, you will need to disable multithreaded support for batched requests, because
AppEngine will not like your app if it creates multiple threads. To do this, set the
batchRequestsMultithreadingEnabled servlet parameter to false.

Once all of this is done, you should be able to run Google AppEngine without a problem.

DirectJNgine: User’s Guide

28 of 47

11. Servlet configuration
The following table includes the list of global configuration parameters, which can be set via
servlet initialization parameters.

Global parameter Description
providersUrl Required.

This URL will be used by Ext Direct to communicate
with DirectJNgine: it must be the same as the
servlet’s url-pattern, minus the ending “/*“.

debug If set to true, default generated api files will be
readable and include comments (they will not be
minified), logs for JSON data will be pretty printed,
etc.

Set to false in your production releases.

Not required.

Default value: false.
apis Required.

A comma-separated value of Direct provider api
names: you can configure each api using the api
configuration parameters in the next table.

Api names must not be duplicated.
gsonBuilderConfiguratorClass It is possible to provide custom Gson configuration

and type handling by specifying a custom class for
this parameter, as explained in the State management
and session/application scope support chapter.

Not required.

Default value:
com.softwarementors.extjs.djn.gson.Default
GsonBuilderConfigurator

registryConfiguratorClass It is possible to register actions and methods
programmatically, for all kinds of requests. You do
this by specifying a custom class for this parameter,
as explained in the Custominzing DirectJNgine
programmatically section.

Not required

Default value: none.
minify If set to false, DirectJNgine will not generate a

minified version of api files.

Not required.

Default value: true
batchRequestsMultithreadingEnabled Please, take a look at the Optimizing batch requests

handling using multiple threads section for an

Copyright © Pedro Agulló Soliveres, 2009, 2011

29 of 47

explanation.

Not required.

Default value: true.
batchRequestsMinThreadsPoolSize Please, take a look at the Optimizing batch requests

handling using multiple threads section for an
explanation.

Not required.

Default value: 16.
batchRequestsMaxThreadsPoolSize Please, take a look at the Optimizing batch requests

handling using multiple threads section for an
explanation.

Not required.

Default value: 80.
batchRequestsMaxThreadKeepAliveSec
onds

Please, take a look at the Optimizing batch requests
handling using multiple threads section for an
explanation.

Not required.

Default value: 60.
batchRequestsMaxThreadsPerRequest Please, take a look at the Optimizing batch requests

handling using multiple threads section for an
explanation.

Not required.

Default value: 8.
dispatcherClass The class implementing the Dispatcher that will

handle action methods: useful for extending
DirectJNgine.

Not required.
jsonRequestProcessorThreadClass The class implementing the

JsonRequestProcessorThread that will handle
batched JSON requests: useful for extending
DirectJNgine.

Not required
contextPath Forces the web app context path, instead of

calculating it via Javascript: this is usually not
needed, but you MUST specify if the web app
context path is the default context (‘/’ or ‘’), because
the Javascript code will not be able to handle this
special case.

Not required.
createSourceFiles When set to false, DirectJNgine will not create

source files. This is needed for Google’s AppEngine,
for example, which does not allow file creation at

DirectJNgine: User’s Guide

30 of 47

run-time.

Not required.

Default value: true

Every Direct provider api we define can be configured by using the parameters in the following
table. Please, note that xxx must be the api name, as declared in the global apis configuration
parameter.

Api parameter Description
xxx.apiFile The file the api will be written to.

It is possible to have several apis written to the same file: just provide
the same file name.

Not required.

Default value: xxx-api.js, xxx being the api name.
xxx.classes A comma separated list of classes to scan for direct methods.

Not required.
xxx.actionsNamespace The namespace for the actions. For example, if we set this to

MyNamespace, then to call myMethod in the MyAction class you will
have to write the following code:

MyNamespace.MyAction.myMethod(...);

If no value is specified, then the actions will not belong to a
namespace, and you’ll write the following code to invoke myMethod:

MyAction.myMethod(...);

Not required.

xxx.apiNamespace The namespace for the api. For example, if we set this to Ext.app, then
you will have to write the following code to register the api:

Ext.Direct.addProvider(
 Ext.app.REMOTING_API);

Not required.

Default value: if actionsNamespace is set, its value will be used. Else,
the default value will be Djn.xxx, xxx being the api name.

Copyright © Pedro Agulló Soliveres, 2009, 2011

31 of 47

12. State management and session/application scope support
While DirectJNgine is just a communication protocol, many users have requested the ability to
access the web session, the servlet context, the servlet configuration, etc. from within their action
methods.

To this end, we have implemented two new classes, WebContext and WebContextManager. The
following code shows how to use them in order to store the number of times a method has been
called in a session:

@DirectMethod
public WebContextInfo test_webContext() {
 WebContext context = WebContextManager.get();
 HttpSession session = context.getSession();
 ServletContext application = context.getServletContext();

 // Keep a counter of how many times we have called this method
 // in this session
 Integer callsInSession=(Integer)session.getAttribute("callsInSession");
 if(callsInSession == null) {
 callsInSession = new Integer(0);
 }
 callsInSession = new Integer(callsInSession.intValue() + 1);
 session.setAttribute("callsInSession", callsInSession);

 // ...
}

As you can see, you just get a WebContext by calling the WebContextManager.get(), and then
you call its getSession method -or getServletContext, getRequest, getResponse,
getServletConfig, depending on your needs. That’s all!

Stateful actions
By default, all action objects are stateless, meaning that they are recreated (at least, conceptually)
every time a new request is handled at the server. However, sometimes it would be nice to have
actions whose state is kept between requests. DirectJNgine has added support both for session
scoped and application scoped action objects, using the ActionScope annotation, as follows:

@ActionScope(scope=Scope.SESSION)
public class SessionStatefulActionTest {
 private int count = 0;

 @DirectMethod
 public synchronized int test_getSessionCallCount() {
 this.count++;
 return this.count;
 }

 // ...
}

The supported scopes are SESSION, APPLICATION and STATELESS. If not explicitly set, the default
action scope is STATELESS.

DirectJNgine: User’s Guide

32 of 47

Generating multiple action instances for a Java class
Now that we have stateful actions, it makes sense to be able to create different instances so that
each one has its own differentiated state.

To this end, we have modified the DirectMethod annotation, so that we can create multiple
instances by providing multiple names, as follows:

@DirectAction(action={"action1","action2"})
public class ClassWithMultipleActionsTest {
 // ...
}

From now on, you will be able to access action1 and action2 in your Javascript code as usual.

Copyright © Pedro Agulló Soliveres, 2009, 2011

33 of 47

13. Customizing data conversion and Gson configuration
We are using Gson to handle data conversion from JSON to Java data and back. Gson is very
powerful, and its default configuration is quite acceptable, but it might happen that you need to
customize it.

What are the Gson configuration options? Just take a look at the Gson User’s Guide, and then the
documentation for its GsonBuilder class, they are all explained there.

Among the configuration options, there is the possibility to control how to serialize/deserialize
certain Java types, such as a hypothetical DateTime class provided by a third party that Gson does
not even know about.

To allow you to handle these issues, we have provided support for you to configure the
GsonBuilder DirectJNgine uses to parse JSON.

Changing Gson’s configuration
To take control of Gson configuration you have to create a class that implements the
GsonBuilderConfigurator interface. As an example, here is the implementation of the class that
defines the default configuration for DirectJNgine:

public class DefaultGsonBuilderConfigurator
 implements GsonBuilderConfigurator
{
 @Override
 public void configure(GsonBuilder builder,
 GlobalConfiguration configuration) {
 assert builder != null;
 assert configuration != null;

 if(configuration.getDebug()) {
 builder.setPrettyPrinting();
 }
 builder.serializeNulls();
 builder.disableHtmlEscaping();
 }
}

The only method you need to override is configure, which receives our GsonBuilder as its first
parameter, and the global DirectJNgine configuration as the second one. We think the code is pretty
much self-explanatory.

Now you have to tell DirectJNgine that you want to use your own custom configurator. To do that,
use the gsonBuilderConfiguratorClass servlet parameter, which must be the full name of the
configurator class:

 <init-param>
 <param-name>gsonBuilderConfiguratorClass</param-name>
 <param-value>
com.softwarementors.extjs.djn.test.config.GsonBuilderConfiguratorForTesting
 </param-value>
 </init-param>

DirectJNgine: User’s Guide

34 of 47

If you don’t specify a value for gsonBuilderConfiguratorClass, the default configurator will be
used.

I want the *default* Gson configuration back!

Just create your own configurator class as follows:

public class MyGsonBuilderConfigurator
 implements GsonBuilderConfigurator {
 @Override
 public void configure(GsonBuilder builder,
 GlobalConfiguration configuration)
 {
 // Do nothing!
 }
}

Adding your own serializers/deserializers
Once you define your own Gson configurator class, you will be able to configure how JSON data is
transformed from JSON to a Java type and back.

As an example, we have implemented support to convert a Javascript object representing a date
(with no time data) to a Java Date. The Javascript object can be defined as follows:

var aDate = {year: 2005, month: 3, day: 20};
MyAction.callMethodWithDate(aDate);

What we want is this kind of Javascript object to be converted to a plain Java date, so that we can
implement the Java method like this:

@DirectMethod
public void callMethodWithDate(Date date) // ...

And, of course, we want to be able to handle dates returned by a Java method in Javascript. To do
these two things, we need to define Gson serializers and deserializers. Here is the code:

public class GsonBuilderConfiguratorForTesting
 extends DefaultGsonBuilderConfigurator
{

 @Override
 public void configure(GsonBuilder builder,
 GlobalConfiguration configuration)
 {
 super.configure(builder, configuration);
 addCustomSerializationSupport(builder);
 }

Copyright © Pedro Agulló Soliveres, 2009, 2011

35 of 47

 private void addCustomSerializationSupport(GsonBuilder builder) {
 // Convert our own custom Javascript "date" to a Java Date
 builder.registerTypeAdapter(Date.class, new JsonSerializer<Date>() {
 public JsonElement serialize(Date src, Type typeOfSrc,
 JsonSerializationContext context) {
 assert src != null;
 assert context != null;
 assert typeOfSrc != null;

 JsonObject result = new JsonObject();
 setIntValue(result, "year", src.getYear() + 1900);
 setIntValue(result, "month", src.getMonth() + 1);
 setIntValue(result, "day", src.getDate());

 return result;
 }
 });

 // Convert a Java Date to our own custom Javascript "date"
 builder.registerTypeAdapter(Date.class, new JsonDeserializer<Date>()
 {
 @Override
 public Date deserialize(JsonElement json, Type typeOfT,
 JsonDeserializationContext context)
 throws JsonParseException
 {
 assert json != null;
 assert context != null;
 assert typeOfT != null;

 if(!json.isJsonObject()) {
 throw new JsonParseException("A Date must be a JSON object");
 }

 JsonObject jsonObject = json.getAsJsonObject();
 int year = getIntValue(jsonObject, "year") - 1900;
 int month = getIntValue(jsonObject, "month") - 1;
 int day = getIntValue(jsonObject, "day");

 Date result = new Date(year, month, day);
 return result;
 }

 });
 }

The code relies in a pair of utility functions that are really not part of the serializer/deserializer,
which we include here for completeness:

 private static void setIntValue(JsonObject parent, String elementName,
 int value) {
 parent.add(elementName, new JsonPrimitive(new Integer(value)));
 }

 private static int getIntValue(JsonObject parent, String elementName)
 {
 assert parent != null;
 assert !StringUtils.isEmpty(elementName);

DirectJNgine: User’s Guide

36 of 47

 JsonElement element = parent.get(elementName);
 if(!element.isJsonPrimitive()) {
 throw new JsonParseException("Element + '" + elementName +
 "' must be a valid integer");
 }
 JsonPrimitive primitiveElement = (JsonPrimitive)element;
 if(!primitiveElement.isNumber()) {
 throw new JsonParseException("Element + '" + elementName +
 "' must be a valid integer");
 }
 return primitiveElement.getAsInt();
 }
}

We hope the code is not too difficult to understand: just take a look at Gson User’s Guide for
details - it is very well written.

Closing thoughts
We have provided this as an example of how to handle non-trivial types, such as Java’s Date. We
decided against providing default serializers/deserializers for classes such as Date or Calendar
because we didn’t want to impose a Javascript format for these types. In our example we defined
our own custom Javascript “date” like this:

var aDate = {year: 2005, month: 3, day: 20};

But, why not use a more compact alternative? Something like this, for example:

var aDate = [2005,3,20];

We thought that the decision should be yours: we hope this example will make it very easy for you
to implement the solution that better fits you.

Copyright © Pedro Agulló Soliveres, 2009, 2011

37 of 47

14. Handling JSON data directly
We have made every effort to handle serialization from JSON to Java for you, so that you can write
methods that receive good old Java data types.

However, there can be cases when you might need to access the JSON data directly for maximum
flexibility, and DirectJNgine allows you to do that too.

Here is some code that shows how to write such a method:

@DirectMethod
public boolean test_handleJsonDataMethod(JsonArray data) {
 assert data != null;

 // Write your own custom code here...
 if(data.size() != 1) {
 throw new DirectTestFailedException(
 "We expected a json array with just one element");
 }

 JsonElement element = data.get(0);
 if(!element.isJsonPrimitive()) {
 throw new DirectTestFailedException(
 "We expected the first json item to be a json primitive");
 }

 JsonPrimitive primitive = (JsonPrimitive)element;
 if(!primitive.isBoolean()) {
 throw new DirectTestFailedException(
 "We expected a primitive json boolean element");
 }
 if(primitive.getAsBoolean()) {
 throw new DirectTestFailedException("We expected a false value");
 }

 return primitive.getAsBoolean();
}

As you can see in the example code, the method must receive a JsonArray, because the data sent
by Ext Direct is encoded in a JSON array. For information on how to handle a JsonArray, take a
look at Gson’s documentation, please.

Of course, this makes sense only for JSON requests, and this means that this is only supported for
standard methods (i.e., those annotated with @DirectMethod).

DirectJNgine: User’s Guide

38 of 47

15. Adding actions and methods programmatically
DirectJNgine registers actions and methods by scanning those classes you specify via the servlet
configuration. However, there will be cases in which you will want to register your own methods
programmatically.

To do this, you must create a class that implements the RegistryConfigurator interface, and then
set the registryConfiguratorClass servlet parameter to the full class name.

As always, we have written automated tests to make sure things really work, and we will use our
own tests to illustrate how to use the feature. Here is the code implementing
RegistryConfigurator for our test implementation:

public class RegistryConfiguratorForTesting implements
 ServletRegistryConfigurator
{

 private Method getMethod(Class<?> cls, String name,
 Class<?> parameterTypes)
 {
 assert cls != null;
 assert !StringUtils.isEmpty(name);

 try {
 Method m = cls.getMethod(name, parameterTypes);
 return m;
 }
 catch (SecurityException e) {
 // Do not do this in production quality code!
 throw new RuntimeException(e);
 }
 catch (NoSuchMethodException e) {
 // Do not do this in production quality code!
 throw new RuntimeException(e);
 }
 }

 public void configure(Registry registry, ServletConfig config) {
 assert registry != null;
 assert config != null;

 // Create a new api programmatically
 String apiFile =
 config.getServletContext().getRealPath("test/ProgrammaticApi.js");
 RegisteredApi api = registry.addApi("programmaticApi",
 "test/ProgrammaticApi.js", apiFile,
 "Djn.programmaticNamespace", "Djn.programmaticNamespace");

 // Register a new action with a method
 RegisteredAction action = api.addAction(
 CustomRegistryConfiguratorHandlingTest.class,
 "MyCustomRegistryConfiguratorHandlingTest");
 Method m = getMethod(CustomRegistryConfiguratorHandlingTest.class,
 "test_programmaticMethod", String.class);
 action.addStandardMethod("myProgrammaticMethod", m, false);

 // Register a poll method
 Method pm = getMethod(CustomRegistryConfiguratorHandlingTest.class,

Copyright © Pedro Agulló Soliveres, 2009, 2011

39 of 47

 "test_programmaticPollMethod", Map.class);
 action.addPollMethod("myProgrammaticPollMethod", pm);
 }
}

As you can see, the programmatic API uses extensively several DirectJNgine classes:
RegisteredApi, RegisteredAction, RegisteredMethod and RegistereredPollMethod.

Now, let’s take a look at how to use this functionality in Javascript. Here is the test code for this
feature:

Djn.CustomRegistryConfiguratorHandlingTest = {
 testClassName : 'CustomRegistryConfiguratorHandlingTest',

 test_programmaticMethod :function() {
 Djn.programmaticNamespace.MyCustomRegistryConfiguratorHandlingTest.
 myProgrammaticMethod('programmatic', function(result, response) {
 Djn.Test.checkSuccessfulResponse("test_programmaticMethod",
 response, result === 'programmatic');
 });
 },

 test_programmaticPollMethod : function() {
 var pollingProvider = Ext.Direct.addProvider({
 type: 'polling',
 interval: 100,
 baseParams : {
 myParameter : 'myValue'
 },
 url:
 Djn.programmaticNamespace.POLLING_URLS.myProgrammaticPollMethod,
 listeners: {
 data: function(provider, event) {
 Ext.log('test_programmaticPollMethod');
 pollingProvider.disconnect();
 Djn.Test.check('test_programmaticPollMethod',
 event.data === 'ok',
 "Expected to receive 'ok' as event.data");
 }
 }
 });
 pollingProvider.connect();
 }

}

In order to understand what’s going on, just find where and how the following code/strings are used
both in Java and Javascript code:

• Djn.programmaticNamespace: the namespace for the javascript provider and actions.

• MyCustomRegistryConfiguratorHandlingTest: the javascript action name. The
corresponding java class is CustomRegistryConfiguratorHandlingTest.

• myProgrammaticMethod: a javascript method name. The corresponding java method is
CustomRegistryConfiguratorHandlingTest.test_programmaticMethod.

DirectJNgine: User’s Guide

40 of 47

• myProgrammaticPollMethod: a javascript poll method name. The corresponding java
method is
CustomRegistryConfiguratorHandlingTest.test_programmaticPollMethod.

• test/ProgrammaticApi.js: the generated api file, which you must add to your HTML
with a script tag.

Just spend a handful of minutes to understand how the java and javascript code are related, and
you’ll be able to write your own code to perform programmatic creation of action methods.

For completeness, here is the code for the action and poll methods:

public class CustomRegistryConfiguratorHandlingTest {
 public String test_programmaticMethod(String value) {
 if(!value.equals("programmatic")) {
 throw new DirectTestFailedException(
 "We expected to receive 'programmatic' as value");
 }

 return value;
 }

 public String test_programmaticPollMethod(
 Map<String,String> parameters)
 {
 assert parameters != null;

 if(parameters.size() != 1 || !parameters.containsKey("myParameter")
 || !parameters.get("myParameter").equals("myValue"))
 {
 throw new DirectTestFailedException(
 "We expected to receive 'myParameter' with a value of 'myValue'");
 }
 return "ok";
 }
}

Note that we are not annotating these methods because we are not going to process them using the
default class scanning functionality built into DirectJNgine –well, that’s the whole point!

Besides, you need not specify the CustomRegistryConfiguratorHandlingTest class in the
servlet configuration as one of the Java classes to scan, for the same reason.

As an aside, let me tell you that DirectJNgine is chock full of assertions (as I write this, I just found
that there are more than 400 assertions spread in the code!). Make sure that you enable them while
in development mode, especially when you are writing code that customizes DirectJNgine itself.
They will be invaluable for debugging.

Copyright © Pedro Agulló Soliveres, 2009, 2011

41 of 47

16. Checking client-side parameters
Due to the ways of Javascript and how Ext Direct works, there are cases in which strange things
can happen when a server methods is called. DirectJNgine provides support for checking some of
those cases, in order to avoid potentially dangerous situations.

In order to better understand some of the problem, let's take a look at the following Java code:

class MyAction {
 @DirectMethod
 double sum(double d1, double d2) {
 return d1 + d2;
 }
}

Now, let's call our sum method with the following Javascript code:

MyAction.sum(3, undefined, 5);

Due to the way Ext Direct serializes json, it will ignore the undefined argument, and the request
will look as if the Javascript method had been called as follows:

MyAction.sum(3, 5);

I think this can be dangerous, because the client and the server are seeing very different things, with
the server not being able to know that something potentially problematic is going on.

The problem gets worse if you pass an array with an undefined value, as it will be ignored, and the
same will happen for an object inside an object inside…that has an array with one of its values set
to undefined. And this last scenario can be really hard to debug.

There are more problematic situations. For example, take a look at the following Javascript calls:

MyAction.sum(3, 5, 7522);
MyAction.sum(3);

In both cases the server will be called with the wrong number of arguments. While the server can
handle this, I think it would be nice if Ext Direct checked that the number of arguments is right
before sending a request.

All in all, we think it would be nice if these things were checked at the client. In fact, we have
implemented support to check for these issues while debugging, as follows:

var remotingProvider = Ext.Direct.addProvider(Djn.test.REMOTING_API);
Djn.RemoteCallSupport.addCallValidation(remotingProvider);
Djn.RemoteCallSupport.validateCalls = true;

This functionality is provided in the djn-remote-call-support.js file, which is located in the
deliverables directory in our distribution.

DirectJNgine: User’s Guide

42 of 47

It is very important that you use this for debug only, for several reasons. The first one is that the
algorithm traverses the whole object graph for every function argument, something that might be
expensive, and you will not want to incur this overhead once you have your application fully
debugged and tested.

The second reason is that the algorithm does not check for cycles: therefore, if you pass object a,
which references object b, and object b references object a, then you will have infinite recursion.
The Javascript interpreter will detect this, and raise an exception. Unfortunately, this is a limitation
in our algorithm. We feel that we can live with this, because we prefer the additional debugging
support these checks give. Besides, you can deactivate temporary parameter checking as follows:

Djn.RemoteCallSupport.validateCalls = false;

We have to confess that we thought twice before adding this feature, but in the end we arrived to
the compromise of using it for debugging purposes only. Just use it judiciously, or simply avoid it
if you don’t like it.

Copyright © Pedro Agulló Soliveres, 2009, 2011

43 of 47

17. DirectJNgine Optimization

Optimizing api files generation and usage
Minimizing network traffic is one of the most important optimizations we can perform for a web
application.

We have worked hard on minimizing both the number of requests, as well as their size when it
comes to api file. Here is the list of optimizations:

• We only regenerate an api file when its contents changes: that way the web server does not

send exactly the same content just because we have rewritten a file and its date and time has
changed. The server will communicate the client that the file has not changed, saving
bandwidth.

Restarting the application server will not force the api files to be rewritten -unless their
content has changed.

• You can consolidate several apis in just one file: as you know, you specify the api file name
for an xxx api via the servlet xxx.apiFile parameter. If you want two different apis to be
written to the same file, use the same file name in the apiFile parameter.

This minimizes the number of requests the client makes to the server to retrieve a web page.

• We generate minified versions of api files to save bandwith.

In fact, DirectJNgine generates three versions of a file. If you specified abc.js int the
apiFile, you will get the following files:

o abc-debug.js: the debug version of the api file.

This is very readable, and includes comments for every method, including the Java
types for the method parameters and the returned value.

o abc-min.js: a minified version of the api file. It does away with unnecesary
whitespace as well as comments.

In our test files we have obtained a file whose size is less than 50% of the debug file
size.

o abc.js: if you have the servlet debug parameter to true, this file will contain debug
code, else it will contain minified code.

Why this file? Because this way you can change what file your application really
uses without having to modify your HTML files code so that they link to abc-
debug.js instead of abc-min.js.

You can disable generation of minified files using the global minify servlet initialization
parameter.

By the way, it is highly unlikely that minification fails: we use the YUI Compressor, a very well
tested minifier. However, if the YUI Compressor raises some exception or reports some error, we
make sure that the minified file will contain at least standard code, so that your application does not
break because there is no “-min.js” file.

DirectJNgine: User’s Guide

44 of 47

Optimizing batch requests handling using multiple threads
When several requests reach the web server, it invokes the DirectJNgine servlet in different
threads, giving us multitasking for free.

However, Ext Direct has a feature that allows independent logical requests to be batched, so they
are all sent grouped in a single physical request. This is a really nice optimization, because it
minimizes the number of data exchanges going on between the client and the server.

The web app knows nothing about this, so it just makes one call to our servlet, instead of
distributing the logical calls among several threads, as it might have done had it received the
requests separately. Since one of our goals is to provide excellent performance, we have decided to
provide support for this feature in DirectJNgine.

Multithreaded handling of batched requests is enabled by default: however, if you need to disable it
for some reason, you can set the batchRequestsMultithreadingEnabled servlet initialization
parameter to false.

There several additional servlet parameters you can use to customize thread usage:

• batchRequestsMinThreadsPoolSize: equivalent to Java’s
ThreadPoolExecutor.getCorePoolSize.

• batchRequestsMaxThreadsPoolSize: equivalent to Java’s
ThreadPoolExecutor.getMaximumPoolSize.

• batchRequestsMaxThreadKeepAliveSeconds: equivalent to Java’s
ThreadPoolExecutor.getKeepAliveTime.

• batchRequestsMaxThreadsPerRequest: explained later.

In order to understand these parameters, take a look at the Javadoc documentation for
ThreadPoolExecutor: it is quite good. We create our thread pool instance passing the parameters
as follows:

new ThreadPoolExecutor(batchRequestsMinThreadsPoolSize,
 batchRequestsMaxThreadsPoolSize,
 batchRequestsThreadKeepAliveSeconds,
 TimeUnit.SECONDS,
 new LinkedBlockingQueue<Runnable>());

The batchRequestsMaxThreadsPerRequest is not passed to the thread pool handler. This
parameter limits the number of threads that will be devoted to handle the individual requests for a
single batched request. We added this limit so that no single client is able to end up consuming all
threads in the pool.

Customizing thread usage is not easy, because this kind of optimization is very context dependent.
That said, I wholeheartedly recommend that you take a look at Java Concurrency in Practice, by
Brian Goetz, especially the sections on thread pool sizing and configuration of
ThreadPoolExecutor.
On the other hand, we think that the default values we provide will be quite adequate for most
users.

Copyright © Pedro Agulló Soliveres, 2009, 2011

45 of 47

18. Diagnostics and logging
At times, debugging Javascript? JSON? Java interactions can be really daunting. Configuration
issues are easier to deal with, but it is always nice to have as much help as possible in that area too.

While programming DirectJNgine we have paid lots of attention to getting accurate diagnostics
when things go awry. In fact, if you take a look at the source code, you’ll see lots of things that
could have been solved with much less code: we have been writing lots of extra code to be very
specific about what the cause of an error is -that’s why we have a whole hierarchy of exceptions.

DirectJNgine uses log4j for logging. All DirectJNgine classes live under the
com.softwarementors.extjs.djn package, so you can adjust the log level adding a logger to
your log4j.properties configuration, as follows:

log4j.logger.com.softwarementors.extjs.djn=INFO

The traces at the INFO level are completely adecuate for production, and we recommend you use
that level, unless you are diagnosing an application. In any case, do not set the logging level to
something less than WARN.

We recommend that you set the trace level to ALL at least once or twice to become familiar with
DirectJNgine logs: running the automated tests in our djn_test WAR might be interesting, because
those tests provoke errors and exercise lots of features, and you will be exposed to all kinds of
logging info.

If you suspect that DirectJNgine is not working correctly, or just to learn what’s going on, you
might find it useful to look at the request and response contents: to take a look at these, set the
logging level to DEBUG.

Measuring request execution time
If you want to get execution time data, you can enable a especial timer logger, as follows:

log4j.logger.com.softwarementors.extjs.djn.Timer=ALL

Here you will find the time it takes to process every servlet call, the time per individual request
(when you receive a bunch of requests in a batch), the time it takes to invoke your Java method (so
that you can know how much time is consumed by DirectJNgine, and how much by your own
code), etc.

Undestanding which logs go together
Given that a web app can receive several requests concurrently, you will probably find their logs
intertwined, making it very difficult to know what log message belongs to which request. To help
with this we provide a unique request id per request, setting it as the log4j NDC value for every log
message. This id will look like “rid: xxx”, xxx being the id.

You can control whether and how this request id is written to logs using the ‘%x’ parameter in your
appender layouts. For example, in the log4j.properties in our djn_test application, we have our
console layout defined as follows:

log4j.appender.Console.layout.ConversionPattern=
 %-5p: %c - "%m" (%x)%n

DirectJNgine: User’s Guide

46 of 47

19. How reliable is all of this?
At the moment of writing this document, we have more than 90 automated tests that check all kinds
of situations: undefined values being passed to a remote method, form posts, form upload posts,
batched JSON posts, complex object structures being returned from the server, etc.

We developed our testing infrastructure as a precondition to develop this library with guarantees:
remote communication is a very tricky subject, and we felt that automated tests were a must. We
have been writing unit tests for years, and test driven development works very well for us.
Therefore, we plan to keep the test list to keep growing as time passes.

If you want to run our battery test, just make sure you have installed the djn_demo.war web app, as
explained before. Once it is up and running, navigate to the test/DjnTests.html page, and all
automated tests will be run…automatically.

To run manual tests, navigate to the test/DjnManualTests.html page, and follow the instructions.

Finally, it will make me feel better if we tell you we run our first battery test against Firefox (3.0.10
at the moment): that’s just so you can use it to run our tests if you find that something goes awry
with whizzbang-explorer 0.3, or something just looks ugly in it.

Why “manual tests”?

We have been developing application using Test Driven Development for almost adecade
now, writing several thousand unitary tests during this time. To TDD advocates, manual
tests are “evil”. Therefore, why do we have several manual test?

Well, it happens that you can’t set a form INPUT field of type FILE programmatically,
due to security concerns. Therefore, we have developed several manual tests, but *only*
to check file uploads.

Copyright © Pedro Agulló Soliveres, 2009, 2011

47 of 47

20. Licensing
DirectJNgine is open source. Please, check the readme.txt file in your distribution for details about
both DirectJNgine and ExtJs licensing.

