DirectJNgine 1.3

beta 1 for ExtJs

User’s Guide

DirectJNgine 1.3 beta 1 for ExtJs 3.2.1
Copyright © Pedro Agull6 Soliveres, 2009, 2010

DirectJNgine: User’ s Guide

L. WHhat 1S DITECEINGINE?.....co ettt sttt e e s se e s beeteeneesbeentesneesreenee e 4
DireCtINGINE iN 30 SECOMUSccuveuieiiieteriestesie ettt b et sb et e e nb e b e b e e ebesaesneeneeneas 4

A = U €= J PR RRT 6
3. Installing DireCtINGINE iN YOUr SYSEEIMccveieeieeeerieeieseesieeeesreeseeeeesreesseeeesseeneesneesseeseens 7
4. Configuring anew project t0 USe DIr€CLINGINEccvveiieieesiieiecee st nneas 8
5. DirectINgIiNE DY EXAMPIEccueeiveeiecieee ettt et re e re e e sneene e 9
Running ExtJs examples against DIreCtINGINEcocceiiiiiiieiic e 9
Step by step “Hello world” With DIr€CtINGINE.cceeieeieeiesee et 9
Step 1: configure DirectINgine serviet in WED. XMoovoiiiiiiiiieeeee e 9
Step 2: make our server methods available to JaVasCriptccoceveeereeieierese e 10
Step 3: decide what your server methods will Be liKe.........ccooviriiii e, 11
Step 4: write the server MEthOdS iN JAVEAcoceeiieeee e 12
Step 5: tell DirectINgine where to ook for server methods...........ccocevvevvicccicce e, 13
Step 6: register your methods With EXt DITECE.........ccveiieiciiiie e 13
Step 7: call the methods from JAVASCHIPLeoveeiiie e e 13
(@1 0TC TS U S TSP 14

LA = 0 TR o TP PR T 15

6. FOrm postSand DIr€CLINGINEccoeiiieriiriirierieseeee ettt b e e 16
Step 1: writing the Javascript code that loads/submits dataccccvveeeveecnveeveccesee e 16
Step 2: CoNfigUre the TOMMN ... e 17
Step 3: write the Java code for loading form data............cooveeevievecieccccce e 17
Step 4. write the Java code for submitting form data...........cccoeevieeiiiiiicse s 18
An aternative way tO SUDMIT ABLAc.eciieiieiiie e e 19

7. Polling Providers and DIr€CLINGINEcoiieiiririeieieresie st 21
8. DirectStore With DIF€CLINGINEcoviiiiiiiite ettt 23
Passing parameters to DireCtStore’ SAIrECIFN..........coviiiiirirere e 24
Passing unknown parameters to DireCtStore’ S dir€CtFN..........ccveceeveeveecee e 25

9. GoOogle APPENGINE SUPPOITcoiveeeeeieireesieeeesieesteeeesseessessessseessessesseessesssssseessessessesssessessses 26
10. Servlet CONfIQUIALIONccueeieceecie ettt e e et e s e s reeeesaeesneenesnnenneas 27
11. State management and session/application SCOPE SUPPOIT.......ccvrvererreereererrieseeseeeseeseeseens 30
I 1 LU o1 00 TSP 30
Generating multiple action instances for a JaVa ClasS.........cccovevirenereneeeee s 31
12. Customizing data conversionand Gson CONfigUIation.............ccoerereeieerenenieseseseseseeeens 32
Changing GSON'S CONfIQUIALTON.ccueeiuieeesieeieseesieeseseesteeeesreesseesesseesseeseesseesseensesseessesneesnes 32
Adding your own serializers/deSerialiZErS........oooveeeieeee e 33
ClOSING tNOUGNES ...t st e e e e et e e e saeesneenneeaeenreeneenns 35

Copyright © Pedro Agull6é Soliveres, 2009, 2010

13. Handling JSON data dir€CHIYcceceeieeiieeeciese ettt s nne s 36
14. Adding actions and methods programmatiCallyccceeveiieeieiieseere e 37
15. Checking client-Side ParamMELErS........cui e iie e ere e 40
16. DireCtINGINE OPtiMIZALION..........cciieiieecieecie et see e e e e re e sre e e te e sreesneesreeenneenns 42
Optimizing api fileS generation and USAO0E........c.uuererirerieeieriesie st 42
Optimizing batch requests handling using multiple threads............c.coovieieiiinc e 43
17. DiagnostiCS aNd I0QGINGeoverueririeiirieriesie sttt sb e e e sse bbb b sse e e e 44
Measuring request EXECULION TIMEveieeieeeereeie e se e ste e e re e e e e sreeeesreesseenaesneensens 44
Undestanding Which 10gS gO tOgEINEYcue i 44
18. How reliableisal Of thiS?........coiiie e 45
S T I o 01 o RSP 46
Acknowledgments

| would like to thank José Maria Martinez and Judith Marcet for their feedback, as well
as for the nice time we have together as part of the softwarementors agile team.

Thanks!

3of 46

DirectJNgine: User’ s Guide

1. What is DirectJNgine?

DirectJNgine (or djn, for short) is a Java implementation of the Ext Direct API. This API allows
applications using ExtJs to call Java methods from Javascript almost transparently, making things
that used to be more or less cumbersome or time consuming much easier.

New to Ext Direct?

If you are new to Ext Direct, please check the ExtJs documentation and examples, or go
to http://extjs.com/blog/2009/05/13/introducing-ext-direct/ or
http://extjs.com/products/extjs/direct.php for details. From now on, we will assume that
you have a basic understanding of Ext Direct, as well as of its “vocabulary” (action,
method, etc.)

DirectJNgine in 30 seconds
Now, how is everyday life with DirectJNgine?

Let’s assume that you want your Javascript code to call asayHel 1o Java method, which will
receive a person name and return a greeting message. That is as easy as writing the following Java
code:

public class Actionl {

@DirectMethod
public String sayHello(String name) {

return “Hello, ” + name + “. Nice to meet youl!”;
}

}

Basically, you write your Java code without much concern for whether it will be called by some
Javascript code living in a remote server or not. The secret? Using the @Di rectMethod annotation
DirectJNgine provides. Once you do that, you will get automatic remote method call support: no
need for boring, cumbersome and error-prone glue code.

Using the newly written method is as easy as writing the following Javascript:

Actionl.sayHello(“Pedro”, function(p, response) {
Ext.MessageBox.alert(“Greetings”, response.result);

D

The only remarkable thing here is the function passed as a parameter to the Actionl.sayHello
method, a Javascript function that will be called when the server response arrives, to avoid blocking
the application.

If you look at the client and server code, you will notice that there is o “extra fat”: what you see is
what you get.

Of course, things can’t be that easy, we are talking about remote communication, Javascript in one
side, Java on the other, and the net in the middle. So, yes, there will be things to configure, issues
to take into account, and best practicesto follow in order to stay sane.

4 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

But once you start to master them, things will be ailmost that easy.

5 of 46

DirectJNgine: User’ s Guide

2. Features

In its current version, we think DirectJNgine is very much feature-complete, providing the
following features:

» Annotations-based configuration.
e Support for all kinds of requests:
0 JSON requests.
0 Batched JSON requests.
o Simple Form Posts (no files to upload).
o0 Upload Form Posts.
o PollingProvider requests.
» Multithreaded processing of batched requests, for better performance.
* Method name based configuration.
e Automatic Javascript APl files generation.
* Detaled User's Guide.

* Demos. implements all the server side functionality required to run the demos provided by
ExtJsin examples/direct.

* AP filesconsolidation: consolidate several provider apis into one file to minimize network
traffic.

» AP files minification and comment removal.
» Support for programmatic Api generation + hook to allow custom generationon startup.
» Debug mode support.

* Fully automated tests: more than 80 unitary tests are executed every time there are changes
to the code.

o Tested against Firefox, Internet Explorer, Safari and Chrome.

» Possihility to call public, private, package and protected instance or static methods in public
or private classes.

» Detailed logging, to support easy diagnostic of problems and performance measurements.
» Open Source, free for commercia projects too.
» Stateful actions: actions can have session and application scopes

» Support for accessing the current session servlet context, servlet configuration, etc., from
within action methods.

» Support for Google AppEngine.

6 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

3. Installing DirectJNgine in your system
To install the library, decompress the appropriate directjnginexxx.zip file into a directory (xxx isthe
library version).

You will need to install ExtJs too: due to licensing issues, we can’t redistribute ExtJs with this
library.Y ou will have to download it from http://extjs.com Just make sure you are using the right
version, please!

Once installed, copy it in an extjs subdirectory under the WebContent directory in our distribution.

7 of 46

DirectJNgine: User’ s Guide

4. Configuring a new project to use DirectJNgine

In order to use DirectJNgine in a new application, you will need to add the following JARS to your
web app WEB-INF/lib directory:

» DirectINgine itsdlf: the file is deliverables/directjngine.xxx.jar, where xxx is the version
number, such as 1.0.

» Third party libraries used by DirectJNgine:
o All JARsinthe lib directory. Please, ignore its subdirectories
0 All JARsin the lib/runtimeonly directory.

If you use the client-side parameter checking debug-time support (take alook at the Checking
client-side parameters chapter), you will need to add severa javascript files to your web app:

* djnremote-call-support.js: put it in djn/djn-remote-call -support.js under the web root
directory.
You can find thisfile in deliverables/djn-remote-call-support.js

e gnassert.js putitin gn/ejn-assert.js under the web root directory.
You can find thisfile in deliverables/ejn-assert.js.

Finally, you will need to provide the ExtJs files: due to licensing issues you need to download them
separately, and then install them in your web app.

The enclosed demo app might use some other files, but they are not needed in order to use
DirectJNgine, and they are not part of it.

Compilation only JARs

In order to compile, you might need the libraries in lib/compiletimeonly or not,
depending on how your environment is set up.

This directory contains JAR files the web server will already provide, so you must not
add them to your app WEB-INF/lib directory.

8 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

5. DirectJNgine by example

ExtJs provides several examples of how to use the Direct API. You can find them in the

extj s/lexamples/direct subdirectory. These examples work beautifully...but they use PHP in the
server side.

However, it is very easy to make them work against Java in the server side, using DirectJNgine. In
fact, we will use them in order to show how DirectJNgine works.

For ExtJs examples to work, you will need to modify dightly severa files, as follows:

» direct.php: subsitute the php/api.php string with../../../demo/Api.js
» direct-form.php: subsitute php/api.php with../../../demo/Api.js
» direct-tree.php: subsitute php/api.php with../../../demo/Api.js

» directjs subsitute ‘php/poll.php’ with Ext.app.POLLING_URLSmessage (yes, remove the
single quotes, unlinke in the prior modifications)

That’s al. From now on, the examples will work directly with against a DirectJNgine based
backend.

In fact, we have provided the application we use to run the automated DirectJNgine testswith the
distribution, and have added support to run the ExtJs Direct demos once “converted” to
DirectIJNgine.

Running ExtJs examples against DirectJNgine
To run Ext Direct examples you need to install the djn_test war. To do that, follow these steps:

1. Install our demos/test_war/djn_test.war in your web server.
2. Start the web application, making sure it is decompressed.

3. Stop the web application, and add the ExtJs librariesin an extjs subdirectory under the web
root directory of the decompressed war.

Do not forget the extjs examples directory, as we use some of its gadgets and examples.
4. Modify the extjs/examples/direct files as explained above.
5. Restart the web application
6. Navigate to the demo/DjnDemo.html page: you can run al examples from there.

Step by step “Hello world” with DirectJNgine

Step 1: configure DirectJNgine servlet in web.xml

Open the WebContent/web.xml file included with your DirectIJNgine distribution, and take alook at
the following lines, used to configure the DirectJNgine servlet:

<!-- DirectJNgine servlet -->
<servlet>
<servlet-name>DjnServilet</servlet-name>

9 of 46

DirectJNgine: User’ s Guide

<servlet-class>
com.softwarementors.extjs.djn.servlet._DirectINgineServlet
</servlet-class>

<init-param>
<param-name>providersUrl</param-name>
<param-value>djn/directprovider</param-value>
</init-param>

<!-- more parameters... -->

<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>DjnServilet</servlet-name>
<url-pattern>/djn/directprovider/*</url-pattern>
</servlet-mapping>

Of course, there are more parameters, but ignore them by now, please.

The servlet url-pattern must aways end with “/*”, and we recommend that you use the default
url, /djn/directprovider/*.

TheprovidersUrl parameter is essential, because it will be used by Ext Direct to communicate
with DirectJNgine: make sure it is the same as the servlet’s url-pattern, minus the ending “/*“.

Step 2: make our server methods available to Javascript

Open the direct.php file: itisaplain html file, so do not worry. We want to call your attention to
the following line:

<script type=""text/Javascript"” src="../../../demo/Api.js""></script>

This line must be there, because Api.jsis the Javascript file that provides access to the Java methods
we implemented in the server. How do you write it? Well, you don’t, DirectJNgine will generate it
on your behalf.

But, how does DirectJNgine know how to create it? Openweb.xml again, and take a look at the
following lines:

<init-param>
<param-name>apis</param-name>
<param-value>
test,
demo,
</param-value>
</init-param>

<init-param>
<param-name>demo.apiFile</param-name>
<param-value>demo/Api . js</param-value>
</init-param>

<init-param>

<param-name>demo.apiNamespace</param-name>
<param-value>Ext.app</param-value>

10 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

</init-param>

Our demo applicationprovides two different provider apis, one for test methods (called test), and
another one for demo methods (called demo). Y ou must provide the apis parametersin order to tell
DirectJNgine the Direct provider apis you want to define.

Y ou specify the file the demo api will be writtent to using the demo.apiFile parameter. Its vaue
isthe file path relative to the web app root directory. In our demo, since it is demo/Api.js
DirectIJNgine will generate Api.jsin the WebContent/demo directory of your installation.

Besides, you can specify the namespace where the api will live, using the demo . apiNamespace
parameter.

Of course, if we were setting the test api configuration, the parameter names would have been
test.apiFile and test.apiNamespace, respectively.
For additional configuration parameters, check the Serviet configuration chapter.

Alternative API handling

DirectIJNgine generates javascript files containing the APl used to access the Java code,
but there is in alternative way to access the API. Please, check the chapter explaining
how to support Google’ s AppEngine for details on how to access the APl in an
environment in which it is not possible to create/update files in the server.

Step 3: decide what your server methods will be like

If you open the extjs/examples/direct/direct.js example file, you will find that the demo calls two
server methods, as follows:

TestAction.doEcho(text.getValue(), function(result, e){
// ...
TestAction.multiply(num_.getvValue(), function(result, e){
// ...

Asyou already know, the functions at the end of the method calls are the callbacks that will be
invoked by Ext Direct to handle the server result. Ignore them, they are not passed to the server —
and we will get back to them later.

Ignoring the functions, the call would be alot more like

TestAction._doEcho(text.getValue());
// ...

TestAction.multiply(num.getvalue());
// ...

TestAction.doEcho receives a string and returnsit. TestAction.multiply receives astring, tries
to multiply it by eight, and returns the result as a number. And, yes, that means the server can

11 of 46

DirectJNgine: User’ s Guide

recelve a string that is not a valid number, so we will have to take care of thisin some way. But,
again, let us postpone those details.

Step 4: write the server methods in Java
This is the Java code for the methods:

public class TestAction {

@DirectMethod

public String doEcho(String data) {
return data;

}

@DirectMethod

public double multiply(String num) {
double num_ = Double.parseDouble(num);
return num_ * 8.0;

}

public static class Node {
public String id;
public String text;
public boolean leaf;
}
}

We have grouped the methods for the TestAction action in a TestAction class. But if you need to
have a class that has not the same name as the action, use the @Di rectAction annotationas
follows:

@DirectAction(action="TestAction")
public class MyTestActionClass {
// ...

We have implemented the methods with exactly the same names the Ext Direct methods have,
adding the @Di rectMethod annotation to them.

Again, if you had to write the Java methods with a different name, you could use the
@DirectMethod annotation as follows:

@DirectMethod(method="multiply™)
public double myMultiplyMethod(String num) {
// ...

If you look at doEcho, you will find that the code is absolutely straightforward, it receives astring
and returns it. Nothing to worry about - unless there is some internal server error, but let me talk
about that later.

Now, if you take alook at multiply, things get a bit more interesting. What if we receive asan
argument something like “ hello world” ? If that’s the case, the call to Double.parseDouble will
throw aNumberFormatException. DirectJNgine will take care of this, and return information that

12 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

allows Ext Direct to know that something went wrong, so that your Javascript code can hardle the
problem

Coping with method’ s results will be explained later, just let me give youreassurancethat even
unexpected server errors can be handled very easily.

Step 5: tell DirectJNgine where to look for server methods

Now, how does DirectJNgine krow what are the classes that contain action methods, so that it can
look for al those nice annotations?

We use the servlet demo. classes parameter to tell djn the classes to check, as follows:

<init-param>
<param-name>demo.classes</param-name>
<param-value>
com.softwarementors.extjs.djn.demo.Poll,
com.softwarementors.extjs.djn.demo.TestAction,
com.softwarementors.extjs.djn.demo.Profile
</param-value>
</init-param>

Remember, here demo is the api definition for ExtJs Direct examples, if we were configuring the
tests api, the parameter to configure would have been tests.classes.

Step 6: register your methods with Ext Direct

In order for ExtJs to be able to call our java methods we need to register a remoting provider. The
way it's been done in direct.jsis as follows:

Ext.Direct.addProvider(
Ext.app-REMOTING_API,
// ...

):

Please, note that Ext . app is the namespace we specified via the demo . apiNamespace servlet
parameter, and REMOTING_AP1 is the provider configuration we have provided in Api.js (we always
use the same name, REMOTING_AP1, to make your life easier).

Step 7: call the methods from Javascript

The WebContent/extjs/examples/directscript.jsfile calls our TestAction.doEcho Java method as
follows:

TestAction.doEcho(text.getValue(), function(result, e) {
var t = e.getTransaction();
out.append(String.format(
"<p>Successful call to {0}.{1} with = +
"response:<xmp>{2}</xmp></p>",
t.action, t.method, Ext.encode(result)));
out.el.scrollTo("t", 100000, true);
P:

13 of 46

DirectJNgine: User’ s Guide

Note we are passing a second parameter, a Javascript function that will be called with the data
returned by the server (it is not sent to the server!). We need to use a function to handle the result
because remote calls are asynchronous, as it would not be a good idea to block the program waiting
for the result.

The function receives the call result in the result parameter, and additional data in the e event,
including the transaction, which holds the invoked action and method names, among other things.

The cal tomultiply isabit more interesting, because it shows how to handle server errors:

TestAction.multiply(num.getValue(), function(result, e) {
var t = e.getTransaction();
if(e.status) {
out.append(String.format(
"<p>Successful call to {0}.{1} with " +
"response:<xmp>{2}</xmp></p>",
t.action, t.method, Ext.encode(result)));

} else {
out.append(String.format(
"<p>Call to {0}.{1} failed with message:<xmp>{2}</xmp></p>",
t.action, t.method, e.message));

}
out.el.scrollTo("t", 100000, true);

D

Here, we get the event transaction and check its status: if it is true, the execution of the
application method finished successfully, and you can safely use the result. Else, the execution
finished with a server error. For al intents and purposes thisis considered to be a server error by
DirectJNgine, and is notified as such to Ext Direct.

When there is a server error, the event received by the function handling the result will have a
message field, providing some kind of explanation about the problem, and if in debug mode, a
where field providing additional information. This field will always be an empty string when not in
debug mode.

DirectJNgine provides as message the name of the Java exception and the message it contains,
whilewhere contains the full stack trace of the exception.
Other issues

We mentioned that while in debug mode you will get additional information about server errors.
Now, how do you specify whether the application isin debug mode or not? Just use the servlet
debug parameter, as follows:

<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>
</init-param>

Finally, in case you are wondering what the generated api file looks like, here is (part of) the code:

Ext.namespace("Ext.app®);

Ext.app.PROVIDER_BASE_URL=window. location.protocol + *//" +

14 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

window. location.host + */° +
(window. location.pathname.split(*/")[1]) + */° + “djn/directprovider”;

// ...

Ext_.app-REMOTING_API = {
url: Ext.app.PROVIDER_BASE URL,
type: "remoting”,
actions: {
TestAction: [

{
name: "doEcho®"/*(String) => String */,
len: 1,
formHandler: false

3,

{
name: “multiply*/*(String) => double */,
len: 1,
formHandler: false

}

// ...

We think that it might be interesting for the api users to know the Java types of the method
parameters and result, and therefore we added it to the generated source code: the parameter types
are specified in parentheses, while the return type is added after the “=>" string.

Wrap up
Now, that’s alot of steps!

However, once you have finished with basic configuration you will find that writing a new method
involves just three steps: thinking what your method hasto look like, writing the java method itself,

and caling it from Javascript. Thisis not much more difficult that creating a new Java method to be
used by other Java code in your application

15 of 46

DirectJNgine: User’ s Guide

6. Form posts and DirectJNgine
Form processing with DirectJNgine is quite easy. But, before we start to take alook at it, make sure

that you have followed the steps we outlined before to “port” the demos from PHP to a
DirectJNgine based Java backend.

Now, let’s check how to load and submit form data using the demo included with ExtJs itsdf, in its
demo/direct/direct-form.jsfile.

Step 1. writing the Javascript code that loads/submits data

To begin with, we are going to study only the first form in the demo (see Figure 1). The datais
some kind of basic person info that includes a name, an emai 1 and a company. Even if it is not
visible, thereisan id that uniquely identifies the person, and an additional hidden foo field, just to
make things interesting.

My Profile
Basic Information -
MName: Aaron Conran
Email: aaron@extjs.com
Company: Ext 15, LLC
Submit
Phone Numbers +
Location Information +

Figurel. Loading and submitting data

Now, how are we going to load that basic person info? The first thing that comes to mind is to pass
the person id to the 1oad method. And, again, to make things interesting, we will pass a foo value.

The Javascript code to load the form data will be as follows:

basiclnfo.getForm().load({

params: {
foo: "bar-,
uid: 34
}
s

You pass the parameters to load as aparams object, not directly, that’s the way it is.
The next step is to submit the form data for processing. Here is the Javascript code:

basiclnfo.getForm().submit({

params: {
foo: "bar”,
uid: 34
}
D

16 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

But, wait! Where are the name, emai 1 and company we should be passing to the server? Well, the
form has fields with exactly those names:. therefore ExtJs will pass their value automatically to the
submit handler waiting for them in the backend. But this only happens for the submit method!

Step 2: configure the form

Ok, now, how does Ext Direct know what Java methods to call? Y ou tell Ext Direct viaan api
configuration parameter, as follows:

api: {
// The server-side method to call for load() requests
load: Profile.getBasiclnfo,
// The server-side must mark the submit handler as a "formHandler®
submit: Profile.updateBasiclnfo

}

You will haveto tell Ext Direct in what order will the 1oad parameters be passed to the Java
method. Use the paramorder configuration parameter to make sure that the id will be the first
parameter and foo the second one, as follows:

paramOrder: ["uid®, "foo"]

And, no, you need not specify the order in which the fields and parameters will be passed to the
Java method that handles the form submit, they are passed as a map of name- vaue to the Java
method.

Step 3: write the Java code for loading form data

Y ou can find the Java code in our Profile.javafile. Lets take alook at our getBasiclnfo method,
the one that handles data loading:

@DirectMethod

public Basiclnfo getBasiclnfo(Long userld, String foo) {
assert userld = null;
assert foo !'= null;

BasiclInfo result = new BasicInfo();
result._data.foo = foo;

result.data.name = "Aaron Conran'';
result._data.company = "Ext JS, LLC";
result.data.email = "aaron@extjs.com";

return result;

Remember, we told Ext Direct that the id is the first parameter, and foo the second one, and that’s
how we have to write the Java method. Besides, the method must be annotated with the
@Di rectMethod annotation.

If you look carefully, you will see that we are returning a Basiclnfo object to the client. The code
for it is as follows:

public static class BasiclInfo {
public static class Data {

17 of 46

DirectJNgine: User’ s Guide

public String foo;
public String name;
public String company;
public String email;

}

public boolean success = true;
public Data data = new Data();
¥

This looks complicated, but it is not, | promise. What's happening here is that the Ext Direct
expects data returned from a load call to have a certain format.

First of al, Ext Direct expects you to provide asuccess value that you set to true if everything
went well, and to false if there was a problem. Then, it expects the returned data to be put in adata
value. Both of them are there in the BasiclInfo class, which is nothing more than a value holder.

It is youwho decides what goes inside of the data. In this case, we just have foo, name, company
and emai I, exactly the names we gave the form fields and/or parameters passed back and forth. We
created the Data class to reflect this structure, nothing more. By following these conventions Ext
Direct will perform all magic required to fill the form fields and pass the data to our Java method.

Once your method returns the data, DirectJNgine will performs all magic required to send it to Ext
Direct for processing at the client.

Step 4: write the Java code for submitting form data

In order to handle the form submit we have to define a Java method annotated with
DirectFormPostMethod. Besides, the Java method must receive two parameters. The first one
must be amap of field name-field value pairs, representing all form fields, except input file fields.

The second parameter must be a map of field name-file items representing only the input file fields:
you can access each file using the Filel tem’sgetInputStream method. If your form has no input
file fields, this map will be empty.

Here is the Java code:

@DirectFormPostMethod

public SubmitResult updateBasiclinfo(Map<String, String> formParameters,
Map<String, Fileltem> FfileFields)

{
assert formParameters != null;
assert fileFields = null;

SubmitResult result = new SubmitResult();

String email = formParameters.get("email™);
result.success = lemail.equals(aaron@extjs.com™);
if('result.success) {
result.errors = new HashMap<String,String>();
result.errors.put("email", "already taken');

}

result.debug_formPacket = formParameters;
return result;

18 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

Here, we are performing data validation by checking the emai I value: if it is aaron@extjs.com, we
will consider that the datais wrong. In that case we set the success field to false, and add an entry
totheerrors result, apair having afield-name askey and an error text asvaue.

By following this convention ExtJs will handle the error on its own, providing feedback as shown
in Figure 2.

My Profile

Basic Information —~

Mame: Aaron Conran
Email: aaron@extjs.com B
Company: Ext 15, LLC
e i already taken
Submil
Phone Mumbers +

Location Information

Figure2. Validation error, as reported by the server.
The method returns a SubmitResult object, defined as follows:

private static class SubmitResult {
public boolean success = true;
public Map<String, String> errors;
public Map<String,String > debug_ formPacket;

}

The interesting thing in this class is the fact that we are using a map to return error informationto
Javascript. When the email is wrong, the data returned to Javascript will be as follows:

result = {
success : false,

errors: {
email: “already taken”

¥,
/7 ...

}

An alternative way to submit data
Just for the record, there is another way to submit data. The Javascript will be as follows:

handler: function(){
Profile.updateBasiclnfo(form.getForm().el, function(result, e){
//. ..

19 of 46

DirectJNgine: User’ s Guide

In this case, we just pass the form’'s el element as the first and only parameter to the remote
method. The Java method implementation will not change.

20 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

7. Polling Providers and DirectJNgine

Polling providers make it possible to make periodical requests to the server. The examplein
extjs/examples/direct/direct.php creates a polling provider that periodically calls the server to get its
current date and time. Let’s see how this can be accomplished with DirectJNgine.

The first thing you have to do is register the polling provider. Thisis done in the “ported” version
of extjs/examples/direct/direct.js as follows:

Ext.Direct.addProvider(
// ...

{
type:"polling”,
url: Ext.app.POLLING_URLS.message
s
)

Here, we are telling Ext Direct to create a polling provider whose url will be the onein

Ext.app.POLLING_URLS.message. We will explain where this comes from in minute, bear with
me.

Now, Ext Direct will receive a periodic rotification sent by the server, which it needs to handle ina
callback function as usual. The code for the callback is as follows:

Ext.Direct.on("message”, function(e){
out.append(String.format("<p><i>{0}</i></p>", e.data));
out.el.scrollTo("t", 100000, true);
P:

In the end, Ext Direct isjust handling an event, called message in the example. Why message? Take
alook at the Java code handling the request, and you'll get the answer:

@DirectPol IMethod(event="message")
public String handleMessagePoll (Map<String,String> parameters) {
assert parameters = null;

Date now = new Date();
SimpleDateFormat formatter =
new SimpleDateFormat("'yyyy/MM/dd "at® hh:mm:ss');
return "Current time in server: " + formatter.format(now);

}

Y ou will have noticed the @DirectPol IMethod(event="message') annotation, and that the event
name is message because we have specified that as the event vaue in the DirectPol IMethod
annotation This is the annotation we need to add to a method used to handle polling provider
requests.

Poll handlers receive as their only parameter a Java map with parameter names as keys and
parameter values as values. In the example no parameters are passed to the request handler, but you
can provide parameters using the provider baseParams config option.

Now, back to the url, Ext.app.POLLING_URLS.message. Where does it come from? It is part of the
generated api file: Ext.app is the value we specified for apiNamespace in the serviet configuration

21 of 46

DirectJNgine: User’ s Guide

for the demo api, and POLLING_URLS is the object holding the urls of all polling eventsin that api.
Lastly, message is the event name.

It is possible to handle polling provider events in Javascript viathe provider’sdata listener as well.
The following code is from one of our interral tests, and shows how to do that. Besides, it shows
how to pass parameters to the request, using the baseParams config option.

var pollingProvider = Ext.Direct.addProvider({
type: “polling”,
interval: 1000,

url: test.POLLING_URLS.test pollWithBaseParams,
baseParams : {

argl : “value-,
}1
listeners: {
data: function(provider, event) {

Ext.log("test_pollWithBaseParams®);
timesCalled++;
if (timesCalled === 2) {
pollingProvider.disconnect();
Djn.Test.check("test_pollWithBaseParams”,
event.data '== undefined && event.data === "argl=value-,
"Expected to receive "argl=value® as event.data");
}
}
}
P:

pollingProvider.connect();

Just for completeness, let us show the Java code:

@DirectPol IMethod

public String test_pollWithBaseParams(Map<String,String> parameters) {
assert parameters = null;

// ...

String result = "";
for(String key : parameters.keySet()) {

String value = parameters.get(key);
result += key + "=" + value;

}

return result;

Please, note that since we haven't specified a vaue for the event parameter in the
DirectPol IMethod annotation, the name of the event is the method name.

22 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

8. DirectStore with DirectJNgine

TheDirectStore isan Ext store that uses Ext Direct to load data. We provide en example of how
to use DirectINgine for that indjn_test web app, in the demo/DirectStoreDemo.html page.

The Javascript code needed to create the store is as follows:

var experienceStore = new Ext.data.DirectStore({
paramsAsHash:false,
root:-"",
directFn: DirectStoreDemo.loadExperienceData,
idProperty: "description®,
fields: [
{name: "startDate" },
{name: "endDate"},
{name: "description”},
1.
listeners: {
load: function(s, records){
Ext.MessageBox.alert("Information', '"Loaded " +
records.length + " records');
}
}.
P;

experienceStore.load();

Setting up a DirectStore is very smilar to setting up any other store: the main difference is the
fact that you have to specify the server side method you want to be called to load the store data
using the directFn config parameter.

The server side codeis as follows:

private static class Experience {
public String startDate;
public String endDate;
public String description;

private Experience(String startDate, String endDate,
String description) {
this._.startDate = startDate;
this.endDate = endDate;
this.description = description;
}
}

@DirectMethod
public List<Experience> loadExperienceData() {
List<Experience> items = new ArrayList<Experience>();
Collections.addAll(items,
new Experience(''2009/05/10", "...",
“Implementation of DirectJNgine for ExtJs')
// ...
)

return items;

23 of 46

DirectJNgine: User’ s Guide

First of al, we define a very simple Java class, Experience, that has al data for items in the store,
(startDate, endDate and description, as defined in the fields config option). The server
method just returns alist of Experience objects.

Thereisreally nothing remarkable about the server method, which as you probably expected just
needs to have the Di rectMethod annotation, and must return alist of objects, in this case of type
Experience. However, you must set the DirectSore paramsAsHash configuration parameter to
fase, for thisto work.

Passing parameters to DirectStore’s directFn

Inred life, you will have to pass some parametert to your directFn method. You can do thisin
severa ways:

* Usethe DirectSiore baseParams configuration property: lookup argFromBaseParams in
the example code below to learn how to do this.

* Usethe 1oad method’s params argument: lookup argPassedlInLoadCall in the example
code to check how to do this.

* Add the parameter to the options object recelved by the DirectSore beforeload method:
lookup argPassedInBeforeLoadEvent to learn how to do this.

Here is the javascript source code for the DirectIJNgine test method demonstrating how to use this:

test_loadWithArguments : function() {
var myStore = new Ext.data.DirectStore({
paramsAsHash:false,
root:“items”,
paramOrder: ["argFromBaseParams®, “argPassedlnLoadCall"”,
"argPassedInBeforeLoadEvent™],
totalProperty : "rowCount-®,
directFn: DirectStoreTest.test_loadWithArguments,

idProperty:"id-,
fields: [
{name: "id" %},
{name: "name"}
1.
listeners: {
beforeload : function(store, options) {
options.params.argPassedInBeforeLoadEvent = false

}>
load: function(s, records){
Djn.Test.check("test_loadWithArguments', records.length === 2,
"1Ff there is an error, this will never be called: a " +
"timeout should happen if there is some error!™);
}
},
baseParams: {argFromBaseParams:~aValue~™}
IDF
myStore. load({
params: {

argPassedlInLoadCall: 34

24 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

}
»:
}

Remember that you must set paramsAsHash to false. Besides, you must specify the order in which
the parameters will be passed using the DirectStore paramorder configuration parameter.

Here is the server side test method:

@DirectMethod

public DirectStoreResult djn_test_loadWithArguments(
String argFromBaseParams, int argPassedlnLoadCall,
boolean argPassedlnBeforelLoadEvent)

if('argFromBaseParams.equals('avalue') || argPassedinLoadCall = 34 ||
argPassedlInBeforeLoadEvent) {
throw new DirectTestFailedException(
"Did no receive expected values™);

}

Output[] result = new Output[2];
result[0] = new Output();
result[0]-.id = 99;
result[0].-name = "namel™;

result[1] = new Output();
result[1].id = 100;
result[1].name = "name2";

DirectStoreResult r = new DirectStoreResult(result, 347);
return r;

Passing unknown parameters to DirectStore’s directFn

If you need to pass unknown parameters (i.e., parameters whose name you don’t know beforehand),
you will need to set the paramsAsHash to true, and then write a direct JSON handling method: we
will study them later.

25 of 46

DirectJNgine: User’ s Guide

9. Google AppEngine support

DirectIJNgine usually creates/updates the javascript files containing the API code when the web
application is started.

This is done on purpose, because it makes it easier for the web server to perform optimizations such
as telling the browser that the .js file has not changed, avoiding the need to transfer its content. For
very large applications, this can make a difference.

Unfortunately, Google AppEngine does not allow writing files to disk (see http://www.mail-
archive.com/googl e-appengine@googl egroups.com/msgl14572.html). In order to solve this
problem, we are alowing an alternative way to reference the API source code. If you were
referencing a test/MyApi.js APl file as follows,

<script type=""text/javascript"”
src=""test/DjnTestApi-debug. js">
</script>

now you should reference it like this:

<script type=""text/javascript"”
src="/XXX/djn/directprovider/src=test/DjnTestApi-debug. js'>
</script>

Here, XXX is the context name, djn/directprovider is the vaue you provided in the DirectJNgine
providersUrl servlet parameter, and /src= is a standard prefix you need to add before the api file
name.

Thisway, DirectJNgine will generate the source code on the fly, making the API files unnecesary.
In fact, the source will be generated and minified at start time, and placed in a cache.

Now, if you don’t want that DirectJNgine creates/updates the source files, you will need to set the
createSourceFiles servlet parameter to false (it is true by default), so that AppEngine does not
complain.

Last, but not least, you will need to disable multithreaded support for batched requests, because
AppEngine will not like your app if it creates multiple threads. To do this, set the
batchRequestsMultithreadingEnabled Serviet parameter to false.

Once dl of thisis done, you should be able to run Google AppEngine without a problem.

26 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

10. Servlet configuration

The following table includes the list of global configuration parameters, whichcan be set via

servlet initialization parameters.

Global parameter Description

providersurl Required.
This URL will be used by Ext Direct to communicate
with DirectINgine: it must be the same as the
servlet’surl-pattern, minus the ending “/7*".

debug If set to true, default generated api files will be
readable and include comments (they will not be
minified), logs for JSON data will be pretty printed,
€tc.
Set to false in your production releases.
Not required.
Default value: false.

apis Required.

A comma-separated value of Direct provider api
names: you can configure each api using the api
configuration parameters in the next table.

Api names must not be duplicated.

gsonBui lderConfiguratorClass

It is possible to provide custom Gson configuration
and type handling by specifying a custom class for
this parameter, as explained in the State management
and session/application scope support chapter.

Not required.

Default value:

com.softwarementors.extjs.djn.gson.Default
GsonBui lderConfigurator

registryConfiguratorClass

It is possible to register actions and methods
programmatically, for all kinds of requests. You do
this by specifying a custom class for this parameter,
as explained in the Custominzing DirectJNgine
programmatically section.

Not required
Default value: none.

minify

If set to false, DirectJNgine will not generate a
minified version of api files.

Not required.
Default value: true

batchRequestsMultithreadingEnabled

Please, take alook at the Optimizing batch requests
handling using multiple threads section for an

27 of 46

DirectJNgine: User’ s Guide

explanation.
Not required.
Default value: true.

batchRequestsMinThreadsPoolSize

Please, take alook at the Optimizing batch requests
handling using multiple threads section for an
explanation.

Not required.
Default value: 16.

batchRequestsMaxThreadsPoolSize

Please, take alook at the Optimizing batch requests
handling using multiple threads section for an
explanation.

Not required.
Default value: 80.

batchRequestsMaxThreadKeepAliveSec
onds

Please, take alook at the Optimizing batch requests
handling using multiple threads section for an
explanation.

Not required.
Default value: 60.

batchRequestsMaxThreadsPerRequest

Please, take alook at the Optimizing batch requests
handling using multiple threads section for an
explanation.

Not required.
Default value: 8.

dispatcherClass

The class implementing the Dispatcher that will
handle action methods. useful for extending
DirectJNgine.

Not required.

JsonRequestProcessorThreadClass

The class implementing the
JsonRequestProcessor Thread that will handle
batched JSON requests: useful for extending
DirectJNgine.

Not required

contextPath

Forces the web app context path, instead of
calculating it via Javascript: thisis usualy not
needed, but you MUST specify if the web app
context path is the default context (/' or *’), because
the Javascript code will not be able to handle this
Special case.

Not required.

createSourceFiles

When set to false, DirectJNgine will not create
source files. This is needed for Google' s AppEngine,
for example, which does not allow file creationat

28 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

run-time.
Not required.
Default value: true

Every Direct provider api we define can be configured by using the parameters in the following
table. Please, note that xxx must be the api name, as declared in the global apis configuration

parameter.

Api parameter

Description

xxx.apiFile

The file the api will be written to.

It is possible to have several apis written to the same file: just provide
the same file name.

Not required.
Default value: xxx-api.js xxx being the api name.

xxX.classes

A comma separated list of classes to scan for direct methods.
Not required.

xxx .actionsNamespace

The namespace for the actions. For example, if we set thisto
MyNamespace, then to call myMethod in the MyAction class you will
have to write the following code:

MyNamespace .MyAction.myMethod(...);

If no value is specified, then the actions will not belong to a
namespace, and you' I write the following code to invoke myMethod:

MyAction.myMethod(...);

Not required.

XXX .apiNamespace

The namespace for the api. For example, if we set this to Ext.app, then
you will have to write the following code to register the api:

Ext.Direct.addProvider(
Ext.app.REMOTING_API);

Not required.

Default value: if actionsNamespace is set, its value will be used. Else,
the default value will be Djn.xxx, xxx being the api name.

29 of 46

DirectJNgine: User’ s Guide

11. State management and session/application scope support

While DirectJNgine is just a communication protocol, many users have requested the ability to
access the web session, the serviet context, the servlet configuration, etc. from within their action
methods.

To this end, we have implemented two new classes, webContext and WebContextManager. The
following code shows how to use themin order to store the number of times a method has been
caled in asession:

@DirectMethod

public WebContextInfo test webContext() {
WebContext context = WebContextManager.get();
HttpSession session = context.getSession();
ServiletContext application = context.getServletContext();

// Keep a counter of how many times we have called this method
// in this session
Integer callslInSession=(Integer)session.getAttribute(*'callslnSession™™);
if(callsInSession == null) {
callslInSession = new Integer(0);

}
callslInSession = new Integer(callslInSession.intvalue() + 1);
session.setAttribute('callsInSession”™, callslnSession);

/7 ...
}

Asyou can see, you just get awebContext by caling the webContextManager .get(), and then
you call its getSession method -or getServletContext, getRequest, getRegponse,
getServletConfig, depending on your needs. That's al!

Stateful actions

By default, all action objects are statel ess, meaning that they are recreated (at least, conceptually)
every time a new request is handled at the server. However, sometimes it would be nice to have
actions whose state is kept between requests. DirectIJNgine has added support both for session
scoped and application scoped action objects, using the ActionScope annotation, as follows:

@ActionScope(scope=Scope.SESSION)
public class SessionStatefulActionTest {
private int count = 0;

@DirectMethod

public synchronized int test_getSessionCallCount() {
this.count++;
return this.count;

}

/7 ...
}

The supported scopes are SESS10N, APPLICATION and STATELESS. If not explicitly set, the default
action scope iS STATELESS.

30 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

Generating multiple action instances for a Java class
Now that we have stateful actions, it makes sense to be able to create different instances so that
each one has its own differentiated state.

To this end, we have modified the Di rectMethod annotation, so that we can create multiple
instances by providing multiple names, as follows:

@DirectAction(action={""actionl",action2"})
public class ClassWithMultipleActionsTest {
/7 ..

}

From now on, youwill be able to access action1 and action2 in your Javascript code as usual.

31 of 46

DirectJNgine: User’ s Guide

12. Customizing data conversion and Gson configuration

We are using Gson to handle data conversion from JSON to Java data and back. Gson isvery
powerful, and its default configuration is quite acceptable, but it might happen that you need to
customize it.

What are the Gson configuration options? Just take alook at the Gson User’s Guide, and then the
documentation for its GsonBui Ider class, they are all explained there.

Among the configuration options, there is the possibility to control how to serialize/deseridize
certain Javatypes, such as ahypothetical DateTime class provided by athird party that Gson does
not even know aboui.

To dlow you to handle these issues we have provided support for you to configure the
GsonBui lder DirectIJNgine uses to parse JSON.

Changing Gson’s configuration

To take control of Gson configuration you have to create a class that implements the
GsonBui lderConfigurator interface. As an example, here is the implementation of the class that
defines the default configuration for DirectJNgine:

public class DefaultGsonBuilderConfigurator
implements GsonBuilderConfigurator

{

@Override
public void configure(GsonBuilder builder,
GlobalConfiguration configuration) {
assert builder '= null;
assert configuration != null;

if(configuration.getbDebug()) {
builder.setPrettyPrinting();
}

builder.serializeNulls(Q);
builder.disableHtmlEscaping();

The only method you need to override is configure, which receives our GsonBui lder asits first
parameter, and the global DirectJNgine configuration as the second one. We think the code is pretty
much self-explanatory.

Now you have to tell DirectJNgine that youwant to use your own custom configurator. To do that,
use the gsonBui IderConfiguratorClass servlet parameter, which must be the full name of the
configurator class:

<init-param>
<param-name>gsonBuilderConfiguratorClass</param-name>

<param-value>
com.softwarementors.extjs.djn.test.config.GsonBuilderConfiguratorForTesting

</param-value>
</init-param>

32 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

If you don’t specify a value for gsonBui lderConfiguratorClass, the default configurator will be
used.

| want the *default* Gson configuration back!
Just create your own configurator class as follows:

public class MyGsonBuilderConfigurator
implements GsonBuilderConfigurator {
@Override
public void configure(GsonBuilder builder,
GlobalConfiguration configuration)
{
// Do nothing!
}
}

Adding your own serializers/deserializers

Once you define your own Gson configurator class, you will be able to configure how JSON data is
transformed from JSON to a Java type and back.

As an example, we have implemented support to convert a Javascript object representing a date
(with no time data) to a Java Date. The Javascript object can be defined as follows:

var aDate = {year: 2005, month: 3, day: 20};
MyAction.cal IMethodWithDate(aDate);

What we want is this kind of Javascript object to be converted to a plain Java date, so that we can
implement the Java method like this:

@DirectMethod
public void callMethodWithDate(Date date) // ...

And, of course, we want to be able to handle dates returned by a Java method in Javascript. To do
these two things, we need to define Gson serializers and deserializers. Here is the code:

public class GsonBuilderConfiguratorForTesting
extends DefaultGsonBuilderConfigurator
{

@Override
public void configure(GsonBuilder builder,
GlobalConfiguration configuration)
{
super.configure(builder, configuration);
addCustomSerializationSupport(builder);
}

33 of 46

DirectJNgine: User’ s Guide

private void addCustomSerializationSupport(GsonBuilder builder) {
// Convert our own custom Javascript "date' to a Java Date
builder._registerTypeAdapter(Date.class, new JsonSerializer<Date>() {
public JsonElement serialize(Date src, Type typeOfSrc,
JsonSerializationContext context) {

assert src != null;
assert context = null;
assert typeOfSrc != null;

JsonObject result = new JsonObject();

setIntValue(result, "year', src.getYear() + 1900);
setintValue(result, "month", src.getMonth() + 1);
setIntValue(result, "day", src.getDate());

return result;
}
D

// Convert a Java Date to our own custom Javascript "date"
builder._registerTypeAdapter(Date.class, new JsonDeserializer<Date>()

{
@Override
public Date deserialize(JsonElement json, Type typeOfT,
JsonDeserializationContext context)
throws JsonParseException

{
assert json != null;
assert context !'= null;
assert typeOfT !'= null;
if(!'json.isJsonObject()) {

throw new JsonParseException("A Date must be a JSON object');

}
JsonObject jsonObject = json.getAsJsonObject();
int year = getlntValue(jsonObject, "year™) - 1900;
int month = getintValue(jsonObject, "month™) - 1;
int day = getintValue(jsonObject, "day™);
Date result = new Date(year, month, day);
return result;

¥

P:

}

The code reliesin apair of utility functions that are really not part of the serializer/deseriaizer,
which we include here for completeness:

private static void setIntValue(JsonObject parent, String elementName,
int value) {
parent.add(elementName, new JsonPrimitive(new Integer(value)));

}
private static int getintvValue(JsonObject parent, String elementName)
{

assert parent = null;

assert !StringUtils.isEmpty(elementName);

34 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

JsonElement element = parent.get(elementName);
if('element.isJsonPrimitive()) {
throw new JsonParseException("Element + " + elementName +
"" must be a valid integer™);
¥

JsonPrimitive primitiveElement = (JsonPrimitive)element;
if('primitiveElement.isNumber()) {

throw new JsonParseException("Element + """ + elementName +
"" must be a valid integer™);
}

return primitiveElement.getAsInt();

We hope the code is not too difficult to understand: just take alook at GsonUser’s Guide for
details-it is very well written

Closing thoughts

We have provided this as an example of how to handle nonttrivial types, such as Java sbate. We
decided against providing default serializers/deserializers for classes such as Date or Calendar
because we didn’t want to impose a Javascript format for these types In our example we defined
our own custom Javascript “date” like this:

var aDate = {year: 2005, month: 3, day: 20};

But, why not use a more compact aternative? Something like this, for example:

var aDate = [2005,3,20];

We thought that the decision should be yours: we hope this example will make it very easy for you
to implement the solution that better fits you

35 of 46

DirectJNgine: User’ s Guide

13. Handling JSON data directly

We have made every effort to handle serialization from JSON to Java for you, so that you can write
methods that receive good old Java data types.

However, there can be cases when you might need to access the JSON data directly for maximum
flexibility, and DirectJNgine allows you to do that too.

Here is some code that shows how to write such a method:

@DirectMethod
public boolean test_handleJdsonDataMethod(JsonArray data) {
assert data != null;

// Write your own custom code here...
if(data.size() '= 1) {
throw new DirectTestFailedException(
"We expected a json array with just one element');
}

JsonElement element = data.get(0);
if('element.isJsonPrimitive()) {
throw new DirectTestFailedException(
"We expected the first json item to be a json primitive');
}

JsonPrimitive primitive = (JsonPrimitive)element;
if(!primitive.isBoolean()) {
throw new DirectTestFailedException(
"We expected a primitive json boolean element™);

by
if(primitive.getAsBoolean()) {
throw new DirectTestFailedException("We expected a false value');

}

return primitive.getAsBoolean();

}

Asyou can see in the example code, the method must receive a JsonArray, because the data sent
by Ext Direct is encoded in a JSON array. For information on how to handle a JsonArray, takea
look at Gson’s documentation, please.

Of course, this makes sense only for JISON requests, and this means that thisis only supported for
standard methods (i.e., those annotated with @Di rectMethod).

36 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

14. Adding actions and methods programmatically

DirectJNgine registers actions and methods by scanning those classes you specify via the serviet
configuration. However, there will be cases in which you will want to register your own methods
programmatically.

To do this, you must create a class that implements the RegistryConfigurator interface, and then
set the registryConfiguratorClass servlet parameter to the full class name.

As always, we have written automated tests to make sure things really work, and we will use our
own tests to illustrate how to use the feature. Here is the code implementing
RegistryConfigurator for our test implementation:

public class RegistryConfiguratorForTesting implements
ServletRegistryConfigurator

{

private Method getMethod(Class<?> cls, String name,
Class<?> parameterTypes)

{
assert cls = null;
assert !StringUtils.isEmpty(name);

try {
Method m = cls.getMethod(name, parameterTypes);

return m;

}

catch (SecurityException e) {
// Do not do this in production quality code!
throw new RuntimeException(e);

by

catch (NoSuchMethodException e) {
// Do not do this in production quality code!
throw new RuntimeException(e);

}

}

public void configure(Registry registry, ServletConfig config) {
assert registry != null;
assert config = null;

// Create a new api programmatically
String apiFile =
config.getServiletContext() .getRealPath('"test/ProgrammaticApi.js');
RegisteredApi api = registry.addApi("programmaticApi',
"test/ProgrammaticApi.js', apiFile,
"Djn.programmaticNamespace', "'Djn.programmaticNamespace");

// Register a new action with a method

RegisteredAction action = api.addAction(
CustomRegistryConfiguratorHandlingTest.class,
"MyCustomRegistryConfiguratorHandlingTest'™);

Method m = getMethod(CustomRegistryConfiguratorHandlingTest.class,
"test_programmaticMethod™, String.class);

action.addStandardMethod("myProgrammaticMethod™, m, false);

// Register a poll method
Method pm = getMethod(CustomRegistryConfiguratorHandlingTest.class,

37 of 46

DirectJNgine: User’ s Guide

"test_programmaticPolIMethod™, Map.class);
action.addPolIMethod("myProgrammaticPol IMethod", pm);
}
}

As you can see, the programmatic APl uses extensively several DirectJNgine classes:
RegisteredApi, RegisteredAction, RegisteredMethod and RegistereredPol IMethod.

Now, let’stake alook at how to use this functionality in Javascript. Here is the test code for this
feature:

Djn.CustomRegistryConfiguratorHandlingTest = {
testClassName : "CustomRegistryConfiguratorHandlingTest®,

test_programmaticMethod :function() {
Djn.programmaticNamespace .MyCustomRegistryConfiguratorHandlingTest.
myProgrammaticMethod("programmatic®, function(result, response) {
Djn.Test.checkSuccessfulResponse(""test_programmaticMethod",
response, result === "programmatic®);
P:
}.

test_programmaticPol IMethod : function() {
var pollingProvider = Ext.Direct.addProvider({
type: “polling”,
interval: 100,
baseParams : {
myParameter : "myValue-®

}.
url:
Djn.programmaticNamespace.POLLING_URLS.myProgrammaticPolIMethod,
listeners: {
data: function(provider, event) {
Ext.log("test_programmaticPolIMethod®);
pollingProvider.disconnect();
Djn.Test.check("test_programmaticPol IMethod",
event.data === "ok",
"Expected to receive "0ok" as event.data");
}
}
P:
pollingProvider.connect();
}

In order to understand what’ s going on, just find where and how the following code/strings are used
both in Java and Javascript code:

* Djn.programmaticNamespace: the namespace for the javascript provider and actions.

* MyCustomRegistryConfiguratorHandlingTest: the javascript action name. The
corresponding java class is CustomRegistryConfiguratorHandlingTest.

* myProgrammaticMethod: ajavascript method name. The corresponding java method is
CustomRegistryConfiguratorHandlingTest.test_programmaticMethod.

38 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

* myProgrammaticPol IMethod: ajavascript poll method name. The corresponding java

method is
CustomRegistryConfiguratorHandlingTest.test_programmaticPol IMethod.

* test/ProgrammaticApi.js: the generated api file, which you must add to your HTML
with ascript tag.

Just spend a handful of minutes to understand how the java and javascript code are related, and
you'll be able to write your own code to perform programmatic creation of action methods.

For completeness, here is the code for the action and poll methods:

public class CustomRegistryConfiguratorHandlingTest {
public String test programmaticMethod(String value) {
if('value.equals("programmatic'™)) {
throw new DirectTestFailedException(
"We expected to receive "programmatic® as value');

}

return value;

}

public String test _programmaticPol IMethod(
Map<String,String> parameters)

{
assert parameters = null;
if(parameters.size() = 1 || !parameters.containskKey("'myParameter')
Il !'parameters.get(myParameter™™) ._equals("myVvalue'™))
{
throw new DirectTestFailedException(
"We expected to receive "myParameter” with a value of "myValue®);
}
return "ok';
by
by

Note that we are not annotating these methods because we are not going to process them using the
default class scanning functionality built into DirectJNgine —well, that’ s the whole point!

Besides, you need not specify the CustomRegistryConfiguratorHandlingTest classin the
servlet configuration as one of the Java classes to scan, for the same reason.

Asan aside, let me tell you that DirectIJNgine is chock full of assertions (as | write this, | just found
that there are more than400 assertions spread in the code!). Make sure that you enable them while
in development mode, especially when you are writing code that customizes DirectJNgine itself.
They will be invaluable for debugging.

39 of 46

DirectJNgine: User’ s Guide

15. Checking client-side parameters

Due to the ways of Javascript and how Ext Direct works, there are cases in which strange things
can happen when a server methods is called. DirectJNgine provides support for checking some of
those cases, in order to avoid potentially dangerous situations.

In order to better understand some of the problem, let's take alook at the following Java code:

class MyAction {
@DirectMethod
double sum(double dl1, double d2) {
return dl1 + d2;

}
}

Now, let's call our sum method with the following Javascript code:

MyAction.sum(3, undefined, 5);

Dueto theway Ext Direct serializes json, it will ignore the undefined argument, and the request
will look asif the Javascript method had been called as follows:

MyAction.sum(3, 5);

I think this can be dangerous, because the client and the server are seeing very different things, with
the server not being able to know that something potentially problematic is going on.

The problem gets worse if you pass an array with an undefined value, asit will be ignored, and the
same will happen for an object inside an object inside...that has an array with one of its values set
to undefined. And this last scenario can bereally hard to debug.

There are more problematic situations. For example, take alook at the following Javascript calls:

MyAction.sum(3, 5, 7522);
MyAction.sum(3);

In both casesthe server will be called with the wrong number of arguments. While the server can
handle this, | think it would be nice if Ext Direct checked that the number of argumentsiis right
before sending a request.

All in al, we think it would be nice if these things were checked at the client. In fact, we have
implemented support to check for these issues while debugging, as follows:

var remotingProvider = Ext.Direct.addProvider(Djn.test.REMOTING_API);
Djn.RemoteCallSupport.addCallValidation(remotingProvider);
Djn.RemoteCallSupport.validateCalls = true;

This functionality is provided in the djn-remote-call-support.jsfile, which is located in the
deliverables directory in our distribution.

40 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

It isvery important that you use this for debug only, for several reasons. The first one is that the
algorithm traverses the whole object graph for every function argument, something that might be
expensive, and you will not want to incur this overhead once you have your application fully
debugged and tested.

The second reason is that the algorithm does not check for cycles: therefore, if you pass object a,
which references object b, and object b references object a, then you will have infinite recursion.
The Javascript interpreter will detect this, and raise an exception. Unfortunately, thisis alimitation
in our algorithm. We fedl that we can live with this, because we prefer the additional debugging
support these checks give. Besides, you can deactivate temporary parameter checking as follows:

Djn.RemoteCallSupport.validateCalls = false;
We have to confess that we thought twice before adding this feature, but in the end we arrived to

the compromise of using it for debugging purposes only. Just use it judicioudly, or smply avoid it
if you don't like it.

41 of 46

16.

DirectJNgine: User’ s Guide

DirectJNgine Optimization

Optimizing api files generation and usage
Minimizing network traffic is one of the most important optimizations we can perform for a web
application.

We have worked hard on minimizing both the number of requests, as well as their size when it
comes to api file. Here is the list of optimizations:

We only regenerate an api file when its contents changes: that way the web server does not
send exactly the same content just because we have rewritten afile and its date and time has
changed. The server will communicate the client that the file has not changed, saving
bandwidth.

Restarting the application server will not force the api files to be rewritten -unless their
content has changed.

Y ou can consolidate several apisin just one file: as you know, you specify the api file name
for an xxx api viathe servlet xxx.apiFile parameter. If you want two different apis to be
written to the same file, use the same file name in the apiFi le parameter.

This minimizes the number of requests the client makes to the server to retrieve a web page.
We generate minified versions of api files to save bandwith.

In fact, DirectIJNgine generates three versions of afile. If you specified abc.jsint the
apiFile, you will get the following files:
o0 abc-debug.js: the debug version of the api file.

Thisis very readable, and includes comments for every method, including the Java
types for the method parameters and the returned value.

0 abc-min.js: aminified version of the api file. It does away with unnecesary
whitespace as well as comments.

In our test files we have obtained a file whose size is less than 50% of the debug file
Sze.

o0 abc,js if you have the servlet debug parameter to true, this file will contain debug
code, elseit will contain minified code.

Why this file? Because this way you can change what file your application really
uses without having to modify your HTML files code so that they link to abc-
debug.jsinstead of abc-min.js
Y ou can disable generation of minified files using the globa minify servlet initialization
parameter.

By the way, it is highly unlikely that minification fails: we use the YUl Compressor, avery well
tested minifier. However, if the YUI Compressor raises some exception or reports some efror, we
make sure that the minified file will contain at least standard code, so that your application does not
break because thereisno “ -min.js’ file.

42 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

Optimizing batch requests handling using multiple threads

When several requests reach the web server, it invokes the DirectIJNgine servlet in different
threads, giving us multitasking for free.

However, Ext Direct has afeature that allows independent logical requests to be batched, so they
are all sent grouped in asingle physical request. Thisis arealy nice optimization, because it
minimizes the number of data exchanges going on between the client and the server.

The web app knows nothing about this, so it just makes one call to our servlet, instead of
distributing the logical calls among several threads, as it might have done had it received the
requests separately. Since one of our goasis to provide excellent performance, we have decided to
provide support for this feature in DirectJNgine.

Multithreaded handling of batched requests is enabled by default: however, if you need to disable it
for some reason, you can set the batchRequestsMultithreadingEnabled Serviet initiaization
parameter to false.

There severa additional serviet parameters you can use to customize thread usage:

* batchRequestsMinThreadsPoolSize: equivalent to Java's
ThreadPoolExecutor.getCorePoolSize.

* batchRequestsMaxThreadsPoolSize: equivaent to Java's
ThreadPoolExecutor.getMaximumPoolSize.

* batchRequestsMaxThreadKeepAliveSeconds: equivalent to Java's
ThreadPoolExecutor.getKeepAliveTime.

* batchRequestsMaxThreadsPerRequest: explained later.

In order to understand these parameters, take alook at the Javadoc documentation for
ThreadPoolExecutor: it is quite good. We create our thread pool instance passing the parameters
as follows:

new ThreadPoolExecutor(batchRequestsMinThreadsPoolSize,
batchRequestsMaxThreadsPoolSize,
batchRequestsThreadKeepAliveSeconds,
TimeUnit.SECONDS,
new LinkedBlockingQueue<Runnable>());

The batchRequestsMaxThreadsPerRequest IS not passed to the thread pool handler. This
parameter limits the number of threads that will be devoted to handle the individual requests for a
single batched request. We added this limit so that no single client is able to end up consuming all
threads in the pool.

Customizing thread usage is not easy, because this kind of optimization is very context dependent.
That said, | wholeheartedly recommend that you take a look at Java Concurrency in Practice, by

Brian Goetz, especialy the sectionson thread pool sizingand configuration of
ThreadPoolExecutor.

On the other hand, we think that the default values we provide will be quite adequate for most
users.

43 of 46

DirectJNgine: User’ s Guide

17. Diagnostics and logging

At times, debugging Javascriptes JSON & Java interactions can be really daunting. Configuration
issues are easier to deal with, but it is aways nice to have as much help as possible in that area too.

While programming DirectJNgine we have paid lots of attention to getting accurate diagnostics
when things go awry. In fact, if you take alook at the source code, you' |l see lots of things that
could have been solved with much less code: we have been writing lotsof extra code to be very
specific about what the cause of an error is-that’s why we have a whole hierarchy of exceptions.

DirectIJNgine uses log4j for logging. All DirectJNgine classes live under the
com.softwarementors.extjs.djn package, so you can adjust the log level adding alogger to
your log4j.properties configuration, as follows:

log4j - logger.com.softwarementors.extjs.djn=INFO

The traces at the INFO level are completely adecuate for production, and we recommend you use
that level, unless you are diagnosing an application In any case, do not set the logging level to
something less than WARN.

We recommend that you set the trace level to ALL at least once or twice to become familiar with
DirectJNgine logs: running the automated tests in our djn_test WAR might be interesting, because
those tests provoke errors and exerciselots of features and you will be exposed to al kinds of
logging info.

If you suspect that DirectIJNgine is not working correctly, or just to learn what’s going on, you
might find it useful to look at the request and response contents: to take alook at these, set the
logging level to DEBUG.

Measuring request execution time
If you want to get execution time data, you can enable a especial timer logger, as follows:

log4j.logger.com.softwarementors.extjs.djn.Timer=ALL

Here you will find the time it takesto process every servlet call, the time per individual request
(when you receive a bunch of requestsin a batch), the time it takes to invoke your Java method (so
that you can know how much time is consumed by DirectJNgine, and how much by your own
code), etc.

Undestanding which logs go together

Given that aweb app can receive several requests concurrently, you will probably find their logs
intertwined, making it very difficult to know what log message belongs to whichrequest. To help
with this we provide a unique request id per request, setting it as the log4j NDC value for every log
message. Thisid will look like* rid: xxx” , xxx being the id.

Y ou can control whether and how this request id is written to logs using the ‘ %x’ parameter in your
appender layouts. For example, in the log4j.propertiesin our djn_test application, we have our
console layout defined as follows:

log4j .appender.Console. layout.ConversionPattern=
%-5p: %c - "%m" (%x)%n

44 of 46

Copyright © Pedro Agull6é Soliveres, 2009, 2010

18. Howreliableis all of this?

At the moment of writing this document, we have more than 90 automated tests that check all kinds
of situations: undefined values being passed to a remote method, form posts, form upload posts,
batched JSON posts, complex object structures being returned from the server, etc.

We developed our testing infrastructure as a precondition to develop this library with guarantees:
remote communication is a very tricky subject, and we felt that automated tests were a must. We
have been writing unit tests for years, and test driven development works very well for us.
Therefore, we plan to keep the test list to keep growing as time passes.

If you want to run our battery test, just make sure you have ingtalled the djn_demo.war web app, as
explained before. Once it is up and running, navigate to the test/DjnTests.html page, and all
automated tests will be run...automatically.

To run manual tests, navigate to the test/DjnManual Tests.html page, and follow the instructions.

Finaly, it will make me feel better if wetell you we run our first battery test against Firefox (3.0.10
a the moment): that’s just so you can useit to run our tests if you find that something goes awry
with whizzbang-explorer 0.3, or something just looks ugly in it.

Why “manual tests” ?

We have been developing application using Test Driven Development for almost adecade
now, writing several thousand unitary tests during this time. To TDD advocates, manual
tests are “evil”. Therefore, why do we have severa manual test?

Wéll, it happens that you can't set a form INPUT field of type FILE programmatically,
due to security concerns. Therefore, we have devel oped several manual tests, but * only*
to check file uploads.

45 of 46

DirectJNgine: User’ s Guide

19. Licensing

DirectJNgine is open source. Please, check the readmetxt file in your distribution for details about
both DirectJNgine and ExtJs licensing.

46 of 46

