

Copyright © Pedro Agulló Soliveres, 2009

DirectJNgine

User’s Guide

Version 1.0 RC1

for ExtJs 3.0.0

DirectJNgine: User’s Guide

2 of 30

1. What is DirectJNgine...4

DirectJNgine in 30 seconds ...4

2. Features ..5

3. Installing DirectJNgine ..6

4. DirectJNgine by example ..7

Running ExtJs examples against DirectJNgine ...7

Step by step “Hello world” with DirectJNgine ..8

Step 1: configure DirectJNgine servlet in web.xml ...8

Step 2: make our server methods available to javascript...8

Step 3: decide what your server methods will be like ...9

Step 4: write the server methods in Java ...10

Step 5: tell DirectJNgine where to look for server methods..11

Step 6: register your methods with Ext Direct...11

Step 7: call the methods from javascript..11

Other issues..12

Wrap up ...13

5. Form posts and DirectJNgine ..14

6. Polling Providers and DirectJNgine ..16

7. DirectStore with DirectJNgine ..18

8. Customizing data conversion and Gson configuration..20

Changing Gson’s configuration...20

Adding your own serializers/deserializers ...21

Closing thoughts ..23

9. DirectJNgine Optimization..24

Optimizing api file generation and usage ..24

Optimizing batch requests handling using multiple threads ..24

10. Diagnostics and logging ..26

Measuring request execution time ...26

Undestanding which logs go together..26

11. Not explained here -but available ..27

12. How reliable is all of this? ...28

13. Call for help ...29

14. Licensing..30

Copyright © Pedro Agulló Soliveres, 2009

3 of 30

Acknowledgments

I would like to thank José María Martínez and Judith Marcet for their feedback, as well
as for the nice time we have together as part of the softwarementors agile team.

Thanks!

DirectJNgine: User’s Guide

4 of 30

1. What is DirectJNgine
DirectJNgine (or djn, for short) is a Java implementation of the Ext Direct API. This API allows
applications using ExtJs to call Java methods in the server almost transparently, making things that
used to be more or less cumbersome or time consuming much easier.

DirectJNgine in 30 seconds
Now, how is everyday life with DirectJNgine?

Let’s assume that you want your Javascript code to call a sayHello Java method, which will
receive a person name and return a greeting message. That is as easy as writing the following Java
code:

public class Action1 {
 @DirectMethod
 public String sayHello(String name) {
 return “Hello, ” + name + “. Nice to meet you!”;
 }
}

Basically, you write your Java code without much concern for whether it will be called by some
Javascript code living in a remote server or not. The secret? Using the @DirectMethod annotation
DirectJNgine provides. Once you do that, you will get automatic remoting support: no need for
boring, cumbersome and error-prone glue code at the server side.

Using the newly written method is as easy as writing the following Javascript:

Action1.sayHello(“Pedro”, function(p, response) {
 Ext.MessageBox.alert(“Greetings”, response.result);
});

The only remarkable thing here is the function passed as a parameter to the Action1.sayHello
method, a Javascript function that will be called when the server response arrives, to avoid blocking
the application.

If you look at the client and server code, you will notice that there is no “extra fat”: what you see is
what you get.

Of course, things can’t be that easy, we are talking about remote communication, javascript in one
side, Java on the other, and the net in the middle. So, yes, there will be things to configure, issues
to take into account, and best practices to follow in order to stay sane.

But once you start to master them, things will be almost that easy.

Now, what about those using JDKs prior to 1.5, that do not support annotations? No problem.
Remove the @DirectMethod annotation from our example, and then rename the sayHello method
to djn_sayHello: the djn_ prefix will be enough to get the magic!

Copyright © Pedro Agulló Soliveres, 2009

5 of 30

2. Features
In its current version, we think DirectJNgine is very much feature-complete, providing the
following features:

• Support for JSON requests.

• Support for batched JSON requests.

• Support for Simple Form Posts (no files to upload).

• Support for Upload Form Posts.

• Support for PollingProvider requests.

• Multithreaded processing of batched requests.

• Annotations-based configuration for JDK 1.5, 1.6, etc.

• Method name based configuration.

• Automatic javascript API Files generation.

• Detailed User’s Guide.

• Demos: implements all the server side functionality required to run the demos provided by
ExtJs in examples/direct.

• Support for generation of multiple API Files.

• Api files minification and comment removal.

• Api consolidation: consolidate several apis into just one file to minimize network traffic.

• Debug mode support.

• Fully automated tests: more than 80 unitary tests are executed every time there are changes
to the code.

• Tested against Firefox, Internet Explorer, Safari and Chrome.

• Possibility to call public, private, package and protected instance or static methods in public
or private classes.

• Detailed logging, to support easy diagnostic of problems and performance measurements.

• Open Source, free for commercial projects too.

DirectJNgine: User’s Guide

6 of 30

3. Installing DirectJNgine
To install the library, decompress the appropriate directjngine.xxx.zip file into a directory (xxx is the
library version).

You will need to install ExtJs too: due to licensing issues, we can’t redistribute ExtJs with this
library.You will have to download it from http://extjs.com. Just make sure you are using the right
version, please!

Once installed, copy it in an extjs subdirectory under the WebContent directory in our distribution.

Copyright © Pedro Agulló Soliveres, 2009

7 of 30

4. DirectJNgine by example

More about Ext Direct

If you are new to Ext Direct, please check the ExtJs documentation and examples, or go
to http://extjs.com/blog/2009/05/13/introducing-ext-direct/ or
http://extjs.com/products/extjs/direct.php for details. From now on, we will assume that
you have a basic understanding of Ext Direct, as well as of its vocabulary (action,
method, etc.).

ExtJs provides several examples of how to use the Direct API. You can find them in the
extjs/examples/direct subdirectory. These examples work beautifully…but they use PHP in the
server side.

However, it is very easy to make them work with Java in the server side, using DirectJNgine. In
fact, we will use them in order to show how DirectJNgine works.

For ExtJs examples to work, you will need to modify slightly several files, as follows:

• direct.php: subsitute the php/api.php string with ../../../demo/Api.js.

• direct-form.php: subsitute php/api.php with ../../../demo/Api.js.

• direct-tree.php: subsitute php/api.php with ../../../demo/Api.js.

• direct.js: subsitute ‘php/poll.php’ with Ext.app.POLLING_URLS.message (yes, remove the
single quotes, unlinke in the prior modifications)

That’s all! From now on, the examples will work directly with DirectJNgine.

In fact, we have provided the application we use to run the automated DirectJNgine tests with the
distribution, and have added support to run the ExtJs Direct demos once “converted” to
DirectJNgine.

Running ExtJs examples against DirectJNgine
To run Ext Direct examples you need to install the djn_test war. To do that, follow these steps:

1. Install our demos/test_war/djn_test.war in your web server.

2. Start the web application, making sure it is decompressed.

3. Stop the web application, and add the ExtJs libraries in an extjs subdirectory under the web
root directory of the decompressed war.

Do not forget the extjs examples directory, as we use some of its gadgets and examples.

4. Modify the extjs/examples/direct files as explained above.

5. Restart the web application.

6. Navigate to the demo/DjnDemo.html page: you can run all examples from there.

DirectJNgine: User’s Guide

8 of 30

Step by step “Hello world” with DirectJNgine

Step 1: configure DirectJNgine servlet in web.xml
Open the WebContent/web.xml file included with your DirectJNgine distribution, and take a look at
the following lines:

<!-- DirectJNgine servlet -->
<servlet>
 <servlet-name>DjnServlet</servlet-name>
 <servlet-class>
 com.softwarementors.extjs.djn.servlet.DirectJNgineServlet
 </servlet-class>

 <init-param>
 <param-name>providersUrl</param-name>
 <param-value>djn/directprovider</param-value>
 </init-param>

 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>DjnServlet</servlet-name>
 <url-pattern>/djn/directprovider/*</url-pattern>
</servlet-mapping>

Here, we configure the DirectJNgine servlet. Of course, there are more parameters, but ignore them
by now, please.

The servlet url-pattern must always end with “/*”, and we recommend that you use the default
url, /djn/directprovider/*.

The providersUrl parameter is essential, because it will be used by Ext Direct to communicate
with DirectJNgine: make sure it is the same as the servlet’s url-pattern, minus the ending “/*“.

Step 2: make our server methods available to javascript

Open the direct.php file: it is a plain html file, so do not worry. We want to call your attention to
the following line:

<script type="text/javascript" src="../../../demo/Api.js"></script>

This line must be there, because Api.js is the javascript file that provides access to the Java methods
we implemented in the server. How do you write it? Well, you don’t, DirectJNgine will generate it
on your behalf.

But, how does DirectJNgine know how to create it? Open web.xml again, and take a look at the
following lines:

<init-param>
 <param-name>apis</param-name>
 <param-value>
 test,
 demo,
 </param-value>

Copyright © Pedro Agulló Soliveres, 2009

9 of 30

</init-param>

<init-param>
 <param-name>demo.apiFile</param-name>
 <param-value>demo/Api.js</param-value>
</init-param>

<init-param>
 <param-name>demo.namespace</param-name>
 <param-value>Ext.app</param-value>
</init-param>

Our applications provides two different apis, one for test methods (called test), and another one for
demo methods (called demo). You must provide the apis parameters in order to tell DirectJNgine
the apis you want to define. Most of the time an “api” is little more than an independent Javascript
file DirectJNgine generates on your behalf.

You have to specify the file the demo api will end up in, using the demo.apiFile parameter. Its
value is the file path relative to the web app root directory. In our demo, since it is demo/Api.js,
DirectJNgine will generate Api.js in the WebContent/demo directory of your installation.

In order to be a good ExtJs citizen, you will have to specify the namespace where all things in the
Api.js file will live, using the demo.namespace parameters.

Of course, if we were setting the test api configuration, the parameter names would have been
test.apiFile and test.namespace, respectively.

Step 3: decide what your server methods will be like

If you open the extjs/examples/direct/direct.js example file, you will find that the demo calls two
server methods, as follows:

TestAction.doEcho(text.getValue(), function(result, e){
// ...
TestAction.multiply(num.getValue(), function(result, e){
// ...

As you already know, the functions at the end of the method calls are the callbacks that will be
invoked by Ext Direct to handle the server result. Ignore them, they are not passed to the server –
and we will get back to them later.

Ignoring the functions, the call would be a lot more like

TestAction.doEcho(text.getValue());

// ...

TestAction.multiply(num.getValue());

// ...

TestAction.doEcho receives a string and returns it. TestAction.multiply receives a string, tries
to multiply it by eight, and returns the result as a number. And, yes, that means the server can
receive a string that is not a valid number, so we will have to take care of this in some way. But,
again, let us postpone those details.

DirectJNgine: User’s Guide

10 of 30

Step 4: write the server methods in Java

This is the Java code for the methods:

public class TestAction {

 @DirectMethod
 public String doEcho(String data) {
 return data;
 }

 @DirectMethod
 public double multiply(String num) {
 double num_ = Double.parseDouble(num);
 return num_ * 8.0;
 }

 public static class Node {
 public String id;
 public String text;
 public boolean leaf;
 }
}

We have grouped the methods for the TestAction action in a TestAction class. But if you need to
have a class that has not the same name as the action, use the @DirectAction annotation as
follows:

@DirectAction(action="TestAction")
public class MyTestActionClass {
 // ...

We have implemented the methods with exactly the same names the Ext Direct methods have,
adding the @DirectMethod annotation to them.

Again, if you had to write the Java methods with a different name, you could use the
@DirectMethod annotation as follows:

@DirectMethod(method="multiply")
public double myMultiplyMethod(String num) {
 // ...

If you look at doEcho, you will find that the code is absolutely straightfo rward, it receives a string
and returns it. Nothing to worry about -unless there is some internal server error, but let me talk
about that later.

Now, if you take a look at multiply, things get a bit more interesting. If the string we receive is
convertible to a number, there is not much to worry about, but, what if we receive a null string, or
something like “hello world”? If that’s the case, the call to Double.parseDouble will throw a
NumberFormatException. Well, DirectJNgine will take care of this, and return information that
allows Ext Direct to know that something went wrong, so that your javascript code can handle the
problem.

Copyright © Pedro Agulló Soliveres, 2009

11 of 30

By the way, what if you are stuck with a JDK that does not support annotations, such as JDK 1.4?
No problem, just add “djn_“ as a prefix to the method name, as follows:

public double djn_myMultiplyMethod(String num) {
 // ...

Of course, the method name as seen by Javascript will still be myMultiplyMethod, the djn_ prefix
is just a hint for DirecJNgine, you don’t want to carry it to the Javascript code.

Coping with method’s results will be explained later, just let me give you reassurance that even
unexpected server errors can be handled very easily.

Step 5: tell DirectJNgine where to look for server methods

Now, how does DirectJNgine know what are the classes that contain action methods, so that it can
look for all those nice annotations?

We use the servlet demo.classes parameter to tell djn the classes to check, as follows:

<init-param>
 <param-name>demo.classes</param-name>
 <param-value>
 com.softwarementors.extjs.djn.demo.Poll,
 com.softwarementors.extjs.djn.demo.TestAction,
 com.softwarementors.extjs.djn.demo.Profile
 </param-value>
</init-param>

Remember, here demo is the api definition for ExtJs Direct examples, if we were configuring the
tests api, the parameter to configure would have been tests.classes.

Step 6: register your methods with Ext Direct

In order for ExtJs to be able to call our java methods we need to register a remoting provider. The
way it’s been done in direct.js is as follows:

Ext.Direct.addProvider(
 Ext.app.REMOTING_API,
 // ...
);

Please, note that Ext.app is the namespace we specified via the demo.namespace servlet
parameter, and REMOTING_API is the provider configuration we have provided in Api.js (we always
use the same name, REMOTING_API, to make your life easier).

Step 7: call the methods from javascript

The WebContent/extjs/examples/directscript.js file calls our TestAction.doEcho Java method as
follows:

TestAction.doEcho(text.getValue(), function(result, e) {
 var t = e.getTransaction();
 out.append(String.format(

DirectJNgine: User’s Guide

12 of 30

 '<p>Successful call to {0}.{1} with ' +
 'response:<xmp>{2}</xmp></p>',
 t.action, t.method, Ext.encode(result)));
 out.el.scrollTo('t', 100000, true);
});

Note we are passing a second parameter, a javascript function that will be called with the data
returned by the server (it is not sent to the server!). We need to use a function to handle the result
because remote calls are asynchronous, as it would not be a good idea to block the program waiting
for the result.

The function receives the call result in the result parameter, and additional data in the e event,
including the transaction, which holds the invoked action and method names, among other things.

The call to multiply is a bit more interesting, because it shows how to handle server errors:

TestAction.multiply(num.getValue(), function(result, e) {
 var t = e.getTransaction();
 if(e.status) {
 out.append(String.format(
 '<p>Successful call to {0}.{1} with ' +
 'response:<xmp>{2}</xmp></p>',
 t.action, t.method, Ext.encode(result)));
 } else {
 out.append(String.format(
 '<p>Call to {0}.{1} failed with message:<xmp>{2}</xmp></p>',
 t.action, t.method, e.message));
 }
 out.el.scrollTo('t', 100000, true);
});

Here, we get the event transaction and check its status : if it is true, the execution of the
application method finished successfully, and you can safely use the result. Else, the execution
finished with a server error. For all intents and purposes this is considered to be a server error by
DirectJNgine, and is notified as such to Ext Direct.

When there is a server error, the event received by the function handling the result will have a
message field, providing some kind of explanation about the problem, and if in debug mode, a
where field providing additional information. This field will always be an empty string when not in
debug mode.

DirectJNgine provides as message the name of the Java exception and the message it contains,
while where contains the full stack trace of the exception.

Other issues
We mentioned that while in debug mode you will get additional information about server errors.
Now, how do you specify whether the application is in debug mode or not? Just use the servlet
debug parameter, as follows:

<init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
</init-param>

Copyright © Pedro Agulló Soliveres, 2009

13 of 30

Finally, in case you are wondering what the generated api file looks like, here is (part of) the code:

Ext.namespace('Ext.app');

Ext.app.PROVIDER_BASE_URL=window.location.protocol + '//' +
 window.location.host + '/' +
 (window.location.pathname.split('/')[1]) + '/' + 'djn/directprovider';

// ...

Ext.app.REMOTING_API = {
 url: Ext.app.PROVIDER_BASE_URL,
 type: 'remoting',
 actions: {
 TestAction: [
 {
 name: 'doEcho'/*(java.lang.String) => java.lang.String */,
 len: 1,
 formHandler: false
 },
 {
 name: 'multiply'/*(java.lang.String) => double */,
 len: 1,
 formHandler: false
 }
 // ...
}

We think that it might be interesting for the api users to know the Java types of the method
parameters and result, and therefore we added it to the generated source code: the parameter types
are specified in parentheses, while the return type is added after the “=>” string.

Wrap up
Now, that’s a lot of steps!

However, once you have finished with basic configuration, you will find that writing a new method
involves just three steps: thinking what your method has to look like, writing the java method itself,
and calling it from javascript. This is not much more difficult that creating a new Java method to be
used by other Java code in your app.

DirectJNgine: User’s Guide

14 of 30

5. Form posts and DirectJNgine
To learn how to handle forms, including file uploads, just go to the demo/FormPostDemo.html
page in the djn_test web app.

First of all, you need to invoke the server method in your javascript code. If you look at
FormPostDemo.js, you will see that the form ‘Submit’ button has a handler, defined as follows:

handler: function(){
 FormPostDemo.handleSubmit(form.getForm().el, function(result, e){
 if(e.type === 'exception') {
 Ext.MessageBox.alert("Unexpected server error", e.message);
 return;
 }
 Ext.MessageBox.alert("Posted values", result.fieldNamesAndValues);
 textArea1.setValue(result.fileContents);
 });
}

In this case, we have to pass the form’s el element as the first and only parameter to a server
method annotated with @DirectFormPostMethod, which is implemented as follows:

public class FormPostDemo {
 public static class Result {
 public String fileContents = "";
 public String fieldNamesAndValues = "";
 }

 @DirectFormPostMethod
 public Result handleSubmit(Map<String, String> formParameters,
 Map<String, FileItem> fileFields) throws IOException
 {
 assert formParameters != null;
 assert fileFields != null;

 Result result = new Result();
 String fieldNamesAndValues = "";

 fieldNamesAndValues += "<p>Non file fields:</p>";
 for(String fieldName : formParameters.keySet()) {
 fieldNamesAndValues += "" + fieldName + "='" +
 formParameters.get(fieldName) + "'
";
 }

 fieldNamesAndValues += "<p></p><p>FILE fields:</p>";
 for(String fieldName : fileFields.keySet()) {
 FileItem fileItem = fileFields.get(fieldName);
 result.fileContents = IOUtils.toString(
 fileItem.getInputStream());
 fileItem.getInputStream().close();

 fieldNamesAndValues += "" + fieldName + ":";

 boolean fileChosen = !fileItem.getName().equals("");
 if(fileChosen) {
 fieldNamesAndValues += " file=" + fileItem.getName() +
 " (size=" + fileItem.getSize() + ")";

Copyright © Pedro Agulló Soliveres, 2009

15 of 30

 }
 else {
 fieldNamesAndValues += " --no file was chose--";
 }
 }

 result.fieldNamesAndValues = fieldNamesAndValues;
 return result;
 }

}

Remember: methods handling form posts use the DirectFormPostMethod annotation, instead of
DirectMethod or DirectPollMethod.

The method that handles the request must receive two parameters. The first parameter must be a
map of field name-field value pairs, representing all form fields, except input file fields.

The second parameter must be a map of field name-file items representing only the input file fields:
you can access each file using the FileItem’s getInputStream method, as shown in the example.
If your form has no input file fields, this map will be empty.

Now, what if you are using a JDK that does not support annotations, such as JDK 1.4? No problem,
just add “djnform_“ as a prefix to the method name, as follows:

public Result djnform_handleSubmit(// ...

Again, the method name as seen by Javascript will still be handleSubmit.

By the way, there is an interesting feature in this demo: we are returning a Result class in the Java
code, which is a complex object. How do we access its fields from Javascript? Just access the fields
using the names they have in Java. In our example the file content is accessed as
result.fileContents.

DirectJNgine: User’s Guide

16 of 30

6. Polling Providers and DirectJNgine
Polling providers make it possible to make periodical requests to the server. The example in
extjs/examples/direct/direct.php creates a polling provider that periodically calls the server to get its
current date and time. Let’s see how this can be accomplished with DirectJNgine.

The first thing you have to do is register the polling provider. This is done in the “ported” version
of extjs/examples/direct/direct.js as follows:

Ext.Direct.addProvider(
 // ...
 {
 type:'polling',
 url: Ext.app.POLLING_URLS.message
 }
);

Here, we are telling Ext Direct to create a polling provider whose url will be the one in
Ext.app.POLLING_URLS.message. We will explain where this comes from in minute, bear with
me.

Now, Ext Direct will receive a periodic notification sent by the server, which it needs to handle in a
callback function, as usual. The code for the callback is as follows:

Ext.Direct.on('message', function(e){
 out.append(String.format('<p><i>{0}</i></p>', e.data));
 out.el.scrollTo('t', 100000, true);
});

In the end, Ext Direct is just handling an event, called ‘message’ in the example. Why ‘message’?
Take a look at the Java code handling the request, and you’ll get your answer:

@DirectPollMethod(event="message")
public String handleMessagePoll(Map<String,String> parameters) {
 assert parameters != null;

 Date now = new Date();
 SimpleDateFormat formatter =
 new SimpleDateFormat("yyyy/MM/dd 'at' hh:mm:ss");
 return "Current time in server: " + formatter.format(now);
}

You will have noticed the @DirectPollMethod(event="message") annotation, and that the event
name is ‘message’ because we have specified "message" as the event in the DirectPollMethod
annotation. This is the annotation we need to add to a method used to handle polling provider
requests.

Poll handlers receive as their only parameter a Java map with parameter names as keys and
parameter values as values. In the example no parameters are passed to the request handler, but you
can provide parameters using the provider baseParams config option.

Now, back to the url, Ext.app.POLLING_URLS.message. Where does it come from? It is part of the
generated api file: Ext.app is the namespace we specified in the servlet configuration for the demo

Copyright © Pedro Agulló Soliveres, 2009

17 of 30

api, and POLLING_URLS is the object holding the urls of all polling events in that api. Lastly,
message is the event name, as specified in the RequestPollMethod annotation.

It is possible to handle polling provider events in javascript via the provider’s data listener as well.
The following code is from one of our internal tests, and shows how to do that. Besides, it shows
how to pass parameters to the request, using the baseParams config option.

var pollingProvider = Ext.Direct.addProvider({
 type: 'polling',
 interval: 1000,
 url: DjnTestApi.POLLING_URLS.test_pollWithBaseParams,
 baseParams : {
 arg1 : 'value',
 },
 listeners: {
 data: function(provider, event) {
 Ext.log('test_pollWithBaseParams');
 timesCalled++;
 if (timesCalled === 2) {
 pollingProvider.disconnect();
 Djn.Test.check('test_pollWithBaseParams',
 event.data !== undefined && event.data === 'arg1=value',
 "Expected to receive 'arg1=value' as event.data");
 }
 }
 }
});

pollingProvider.connect();

Just for completeness, let us show the Java code:

@DirectPollMethod
public String test_pollWithBaseParams(Map<String,String> parameters) {
 assert parameters != null;

 // ...

 String result = "";
 for(String key : parameters.keySet()) {
 String value = parameters.get(key);
 result += key + "=" + value;
 }

 return result;
}

Please, note that since we haven’t specified a value for the event parameter in the
DirectPollMethod annotation, the name of the event is the method name.

If you are using a JDK that does not support annotations, just add “djnpoll_“ as a prefix to the
method name, as follows:

public String djnpoll_test_pollWithBaseParams(//...

Again, the method name as seen by Javascript will still be handleSubmit.

DirectJNgine: User’s Guide

18 of 30

7. DirectStore with DirectJNgine
The DirectStore is an Ext store that uses Ext Direct to load data. We provide en example of how
to use DirectJNgine for that in djn_test web app, in the demo/DirectStoreDemo.html page.

The javascript code needed to create the store is as follows:

var experienceStore = new Ext.data.DirectStore({
 paramsAsHash:false,
 root:'',
 directFn: DirectStoreDemo.loadExperienceData,
 idProperty:'description',
 fields: [
 {name: 'startDate' },
 {name: 'endDate'},
 {name: 'description'},
],
 listeners: {
 load: function(s, records){
 Ext.MessageBox.alert("Information", "Loaded " +
 records.length + " records");
 }
 },
});

experienceStore.load();

Setting up a DirectStore is very similar to setting up any other store: the main difference is the
fact that you have to specify the server side method you want to be called to load the store data
using the directFn config parameter.

The server side code is as follows:

private static class Experience {
 public String startDate;
 public String endDate;
 public String description;

 private Experience(String startDate, String endDate,
 String description) {
 this.startDate = startDate;
 this.endDate = endDate;
 this.description = description;
 }
}

@DirectMethod
public List<Experience> loadExperienceData() {
 List<Experience> items = new ArrayList<Experience>();
 Collections.addAll(items,
 new Experience("2009/05/10", "...",
 "Implementation of DirectJNgine for ExtJs")
 // ...
);

 return items;

Copyright © Pedro Agulló Soliveres, 2009

19 of 30

}

First of all, we define a very simple Java class, Experience, that has all data for items in the store,
(startDate, endDate and description, as defined in the fields config option). The server
method just returns a list of Experience objects.

There is really nothing remarkable about the server method, which as you probably expected just
needs to have the DirectMethod annotation.

DirectJNgine: User’s Guide

20 of 30

8. Customizing data conversion and Gson configuration
We are using Gson to handle data conversion from JSON to Java data and back. Gson is very
powerful, and its default configuration is quite acceptable, there will be a time when you will need
to customize it.

What are the Gson configuration options? Just take a look at the Gson User’s Guide, and then the
documentation for its GsonBuilder: you’ll have access to all the configuration options there.

Among the configuration options, there is the possibility to control how to serialize/deserialize
certain Java types, such as a hypothetical DateTime class provided by a third party that Gson does
not even know about.

To allow you to handle these issues, we have provided support for you to configure the
GsonBuilder DirectJNgine uses to parse JSON.

Changing Gson’s configuration
To take control of Gson configuration you have to create a class that implements the
GsonBuilderConfigurator interface. As an example, here is the implementation of the class that
defines the default configuration for DirectJNgine:

public class DefaultGsonBuilderConfigurator
 implements GsonBuilderConfigurator
{
 @Override
 public void configure(GsonBuilder builder,
 GlobalConfiguration configuration) {
 assert builder != null;
 assert configuration != null;

 if(configuration.getDebug()) {
 builder.setPrettyPrinting();
 }
 builder.serializeNulls();
 builder.disableHtmlEscaping();
 }
}

The only method you need to override is configure, which receives our GsonBuilder as its first
parameter, and the global DirectJNgine configuration as the second one. We think the code is pretty
much self-explanatory.

Now you have to tell DirectJNgine that you want to use a custom configurator. To do that, use the
gsonBuilderConfiguratorClass servlet parameter, which must be the full name of the
configurator class:

 <init-param>
 <param-name>gsonBuilderConfiguratorClass</param-name>
 <param-value>
com.softwarementors.extjs.djn.test.config.GsonBuilderConfiguratorForTesting
 </param-value>
 </init-param>

Copyright © Pedro Agulló Soliveres, 2009

21 of 30

If you don’t specify a value for gsonBuilderConfiguratorClass, the default configurator will be
used.

I want the *default* Gson configuration back!

Just create your own configurator class as follows:

public class MyGsonBuilderConfigurator
 implements GsonBuilderConfigurator {
 @Override
 public void configure(GsonBuilder builder,
 GlobalConfiguration configuration)
 {
 // Do nothing!
 }
}

Do not forget to set the gsonBuilderConfiguratorClass servlet parameter too!

Adding your own serializers/deserializers
Once you define your own Gson configurator class, you will be able to configure how JSON data is
transformed from JSON to a Java type and back.

As an example, we have implemented support to convert a Javascript object representing a date
(with no time data) to a Java Date. The javascript object can be defined as follows:

var aDate = {year: 2005, month: 3, day: 20};
MyAction.callMethodWithDate(aDate);

What we want is this kind of javascript object to be converted to a plain Java date, so that we can
implement the Java method like this:

@DirectMethod
public void callMethodWithDate(Date date) // ...

And, of course, we want to be able to handle dates returned by a Java method too. To do these two
things, we need to define Gson serializers and deserializers. Here is the code:

public class GsonBuilderConfiguratorForTesting
 extends DefaultGsonBuilderConfigurator
{

 @Override
 public void configure(GsonBuilder builder,
 GlobalConfiguration configuration)
 {
 super.configure(builder, configuration);
 addCustomSerializationSupport(builder);

DirectJNgine: User’s Guide

22 of 30

 }

 private void addCustomSerializationSupport(GsonBuilder builder) {
 // Convert our own custom javascript "date" to a Java Date
 builder.registerTypeAdapter(Date.class, new JsonSerializer<Date>() {
 public JsonElement serialize(Date src, Type typeOfSrc,
 JsonSerializationContext context) {
 assert src != null;
 assert context != null;
 assert typeOfSrc != null;

 JsonObject result = new JsonObject();
 setIntValue(result, "year", src.getYear() + 1900);
 setIntValue(result, "month", src.getMonth() + 1);
 setIntValue(result, "day", src.getDate());

 return result;
 }
 });

 // Convert a Java Date to our own custom javascript "date"
 builder.registerTypeAdapter(Date.class, new JsonDeserializer<Date>()
 {
 @Override
 public Date deserialize(JsonElement json, Type typeOfT,
 JsonDeserializationContext context)
 throws JsonParseException
 {
 assert json != null;
 assert context != null;
 assert typeOfT != null;

 if(!json.isJsonObject()) {
 throw new JsonParseException("A Date must be a JSON object");
 }

 JsonObject jsonObject = json.getAsJsonObject();
 int year = getIntValue(jsonObject, "year") - 1900;
 int month = getIntValue(jsonObject, "month") - 1;
 int day = getIntValue(jsonObject, "day");

 Date result = new Date(year, month, day);
 return result;
 }

 });
 }

The code relies in a pair of utility functions that are really not part of the serializer/deserializer,
which we include here for completeness:

 private static void setIntValue(JsonObject parent, String elementName,
 int value) {
 parent.add(elementName, new JsonPrimitive(new Integer(value)));
 }

 private static int getIntValue(JsonObject parent, String elementName)
 {
 assert parent != null;

Copyright © Pedro Agulló Soliveres, 2009

23 of 30

 assert !StringUtils.isEmpty(elementName);

 JsonElement element = parent.get(elementName);
 if(!element.isJsonPrimitive()) {
 throw new JsonParseException("Element + '" + elementName +
 "' must be a valid integer");
 }
 JsonPrimitive primitiveElement = (JsonPrimitive)element;
 if(!primitiveElement.isNumber()) {
 throw new JsonParseException("Element + '" + elementName +
 "' must be a valid integer");
 }
 return primitiveElement.getAsInt();
 }
}

We hope the code is not too difficult to understand: just take a look at Gson User’s Guide for
details - it is very well written.

Closing thoughts
We have provided this as an example of how to handle non-trivial types, such as Java’s Date. We
decided against providing default serializers/deserializers for classes such as Date or Calendar
because we didn’t want to impose a Javascript format for these types. In our example we defined
our own custom Javascript “date” like this:

var aDate = {year: 2005, month: 3, day: 20};

But, why not use a more compact alternative? Something like this, for example:

var aDate = [2005,3,20];

We thought that the decision should be yours: we hope this example will make it very easy for you
to implement the solution that better fits you.

DirectJNgine: User’s Guide

24 of 30

9. DirectJNgine Optimization

Optimizing api file generation and usage
Minimizing network traffic is one of the most important optimizations we can perform for a web
application. Therefore, we need to take care of how we handle api files.

We have worked hard on minimizing both the number of requests, as well as their size when it
comes to api file. Here is the list of optimizations:

• We only regenerate an api file when its contents changes: that way the web server does not

send exactly the same content just because we have rewritten a file and its date and time has
changed. The server will communicate the client that the file has not changed, saving
bandwidth.

Restarting the application server will not force the api files to be rewritten -unless their
content has changed.

• You can consolidate several apis in just one file: as you know, you specify the api file name
for an xxx api via the servlet xxx.apiFile parameter. If you want two different apis to be
written to the same file, use the same file name in the apiFile parameter.

This minimizes the number of requests the client makes to the server to retrieve a web page.

• We generate minified versions of api files to save bandwith.

In fact, DirectJNgine generates three versions of a file. If you specified abc.js int the
apiFile, you will get the following files:

o abc-debug.js: the debug version of the api file.

This is very readable, and includes comments for every method, including the Java
types for the method parameters and the returned value.

o abc-min.js: a minified version of the api file. It does away with unnecesary
whitespace as well as comments.

In our test files we have obtained a file whose size is less than 50% of the debug file
size.

o abc.js: if you have the servlet debug parameter to true, this file will contain debug
code, else it will contain minified code.

Why this file? Because this way you can change what file your application really
uses without having to modify your HTML files code so that they link to abc-
debug.js instead of abc-min.js.

By the way, it is highly unlikely that minification fails: we use the YUI Compressor, a very well
tested minifier. However, if the YUI Compressor raises some exception or reports some error, we
make sure that the minified file will contain at least standard code, so that your application does not
break because there is no “-min.js” file.

Optimizing batch requests handling using multiple threads
When several requests reach the web server, it invokes the DirectJNgine servlet in different
threads, giving us multitasking for free.

Copyright © Pedro Agulló Soliveres, 2009

25 of 30

However, Ext Direct has a feature that allows independent logical requests to be batched, so they
are all sent grouped in a single physical request. This is a really nice optimization, because it
minimizes the number of data exchanges going on between the client and the server.

The web app knows nothing about this, so it just makes one call to our servlet, instead of
distributing the logical calls among several threads, as it might have done had it received the
requests separately. Since one of our goals is to provide excellent performance, we have decided to
provide support for this feature in DirectJNgine.

Multithreaded handling of batched requests is enabled by default: however, if you need to disable it
for some reason, you can set the batchRequestsMultithreadingEnabled servlet initialization
parameter to false.

There several additional servlet parameters you can use to customize thread usage:

• batchRequestsMinThreadsPoolSize: equivalent to Java’s
ThreadPoolExecutor.getCorePoolSize.

• batchRequestsMaxThreadsPoolSize: equivalent to Java’s
ThreadPoolExecutor.getMaximumPoolSize.

• batchRequestsMaxThreadKeepAliveSeconds: equivalent to Java’s
ThreadPoolExecutor.getKeepAliveTime.

• batchRequestsMaxThreadsPerRequest: explained later.

In order to understand these parameters, take a look at the Javadoc documentation for
ThreadPoolExecutor: it is quite good. We create our thread pool instance passing the parameters
as follows:

new ThreadPoolExecutor(batchRequestsMinThreadsPoolSize,
 batchRequestsMaxThreadsPoolSize,
 batchRequestsThreadKeepAliveSeconds,
 TimeUnit.SECONDS,
 new LinkedBlockingQueue<Runnable>());

The batchRequestsMaxThreadsPerRequest is not passed to the thread pool handler. This
parameter limits the number of threads that will be devoted to handle the individual requests for a
single batched request. We added this limit so that no client is able to end up consuming all threads
in the pool.

Customizing thread usage is not easy, because this kind of optimization is very context dependent.
That said, I wholeheartedly recommend that you take a look at Java Concurrency in Practice, by
Brian Goetz, especially the sections on thread pool sizing and configuration of
ThreadPoolExecutor.

On the other hand, we think that the default values we provide will be quite adequate for most
users.

DirectJNgine: User’s Guide

26 of 30

10. Diagnostics and logging
At times, debugging Javascript? JSON? Java interactions can be really daunting. Configuration
issues are easier to deal with, but it is always nice to have as much help as possible in that area too.

While programming DirectJNgine we have paid lots of attention to getting accurate diagnostics
when things go awry. In fact, if you take a look at the source code, you’ll see lots of things that
could have been solved with much less code: we have been writing lots of extra code to be very
specific about what the cause of an error is -that’s why we have a whole hierarchy of exceptions.

DirectJNgine uses log4j for logging. All DirectJNgine classes live under the
com.softwarementors.extjs.djn package, so you can adjust the log level adding a logger to
your log4j.properties configuration, as follows:

log4j.logger.com.softwarementors.extjs.djn=INFO

The traces at the INFO level are completely adecuate for production, and we recommend you use
that level, unless you are diagnosing an application. In any case, do not set the logging level to
something less than WARN.

We recommend that you set the trace level to ALL at least once or twice to become familiar with
DirectJNgine logs: running the automated tests in our djn_test WAR might be interesting, because
those tests provoke errors and exercise lots of features, and you will be exposed all kinds of logging
info.

If you suspect that DirectJNgine is not working correctly, or just to learns what’s going on, you
might find it useful to look at the request and response contents: to take a look at these, set the
logging level to DEBUG.

Measuring request execution time
If you want to get execution time data, you can enable a especial timer logger, as follows:

log4j.logger.com.softwarementors.extjs.djn.Timer=ALL

Here you will find the time it takes to process every servlet call, the time per individual request
(when you receive a bunch of requests in a batch), the time it takes to invoke your Java method (so
that you can know how much time is consumed by DirectJNgine, and how much by your own
code), etc.

Undestanding which logs go together
Given that a web app can receive several requests concurrently, you will probably find their logs
intertwined, making it very difficult to know what log message belongs to which request. To help
with this we provide a unique request id per request, setting it as the log4j NDC value for every log
message. This id will look like “rid: xxx”, xxx being the id.

You can control whether and how this request id is written to logs using the ‘%x’ parameter in your
appender layouts. For example, in the log4j.properties in our djn_test application, we have our
console layout defined as follows:

log4j.appender.Console.layout.ConversionPattern=
 %-5p: %c - "%m" (%x)%n

Copyright © Pedro Agulló Soliveres, 2009

27 of 30

11. Not explained here -but available
Unfortunately, there are several features that are fully implemented and tested, but are not
explained in this User’s Guide.

In many cases you can learn how they work by looking at DirectJNgine tests in DjnTests.js. In
other cases, you can take a look at our own demos, or how we ported the ExtJs examples/direct
demos.

Some of the most important of these features are:

• Form loading and submitting via ExtJs’s api configuration parameter: check the direct-
form.js example “port”.

• Server based validation of forms (i.e., providing per-field errors): check the direct-form.js
example “port”.

• Tree loading: check the direct-tree.js example “port”.

DirectJNgine: User’s Guide

28 of 30

12. How reliable is all of this?
At the moment of writing the first version of this document, we have more than 70 automated tests
that check all kinds of situations: undefined values being passed to a remote method, form posts,
form upload posts, batched JSON posts, complex object structures being returned from the server,
etc.

We developed our testing infrastructure as a precondition to develop this library with guarantees:
remote communication is a very tricky subject, and we felt that automated tests were a must. We
have been writing unit tests for years, and test driven development works very well for us.
Therefore, we plan to keep the test list to keep growing as time passes.

If you want to run our battery test, just make sure you have installed the djn_demo.war web app, as
explained before. Once it is up and running, navigate to the test/DjnTests.html page, and all
automated tests will be run…automatically.

To run manual tests, navigate to the test/DjnManualTests.html page, and follow the instructions.

Finally, it will make me feel better if we tell you we run our first battery test against Firefox (3.0.10
at the moment): that’s just so you can use it to run our tests if you find that something goes awry
with whizzbang-explorer 0.3, or something just looks ugly in it.

Why “manual tests”?

We have been developing application using Test Driven Development for almost adecade
now, writing several thousand unitary tests during this time. To TDD advocates, manual
tests are “evil”. Therefore, why do we have several manual test?

Well, it happens that you can’t set a form INPUT field of type FILE programmatically,
due to security concerns. Therefore, we have developed several manual tests, but *only*
to check file uploads.

Copyright © Pedro Agulló Soliveres, 2009

29 of 30

13. Call for help
We are releasing this library in the hope that it is useful to the programming community.

We understand that this is the first public beta release of the library, which has been tested in a very
restricted environment. Unfortunately, that can only guarantee that there is not way for it to be
feature complete or bug free.

It is only natural that we will be happy to receive feedback.

Now, receiving feedback it in the form of automated tests that can be added to those in DjnTests.js,
if at all possible, will allow both you and us to remain focused -the key to quality. And, of course, it
will make it much more likely that your concerns are addressed, for our time is very limited.

Thanks in advance!

DirectJNgine: User’s Guide

30 of 30

14. Licensing
DirectJNgine is open source. Please, check the readme.txt file in your distribution for details about
both DirectJNgine and ExtJs licensing.

